Adverse Effects of Genotoxicity, Bioaccumulation and Ionoregulatory Modulation of Two Differently Synthesized Iron Oxide Nanoparticles on Zebrafish (Danio rerio)

2018 ◽  
Vol 28 (6) ◽  
pp. 2603-2611 ◽  
Author(s):  
D. Suganya ◽  
C. M. Ramakritinan ◽  
M. R. Rajan
Author(s):  
Ellen Irrsack ◽  
Julia Schuller ◽  
Charlotte Petters ◽  
Wiebke Willmann ◽  
Ralf Dringen ◽  
...  

AbstractIron oxide nanoparticles (IONPs) are used for diverse medical approaches, although the potential health risks, for example adverse effects on brain functions, are not fully clarified. Several in vitro studies demonstrated that the different types of brain cells are able to accumulate IONPs and reported a toxic potential for IONPs, at least for microglia. However, little information is available for the in vivo effects of direct application of IONPs into the brain over time. Therefore, we examined the cellular responses and the distribution of iron in the rat brain at different time points after local infusion of IONPs into selected brain areas. Dispersed IONPs or an equivalent amount of low molecular weight iron complex ferric ammonium citrate or vehicle were infused into the medial prefrontal cortex (mPFC), the caudate putamen (CPu), or the dorsal hippocampus (dHip). Rats were sacrificed 1 day, 1 week, or 4 weeks post-infusion and brain sections were histologically examined for treatment effects on astrocytes, microglia, and neurons. Glial scar formation was observed in the mPFC and CPu 1 week post-infusion independent of the substance and probably resulted from the infusion procedure. Compared to vehicle, IONPs did not cause any obvious additional adverse effects and no additional tissue damage, while the infusion of ferric ammonium citrate enhanced neurodegeneration in the mPFC. Results of iron staining indicate that IONPs were mainly accumulated in microglia. Our results demonstrate that local infusions of IONPs in selected brain areas do not cause any additional adverse effects or neurodegeneration compared to vehicle.


Chemosphere ◽  
2020 ◽  
Vol 254 ◽  
pp. 126792 ◽  
Author(s):  
Aryelle Canedo Pereira ◽  
Bruno Bastos Gonçalves ◽  
Rafaella da Silva Brito ◽  
Lucélia Gonçalves Vieira ◽  
Emília Celma de Oliveira Lima ◽  
...  

Author(s):  
Muthuswami Ruby Rajan ◽  
Manjula Devi Mangalaraj ◽  
Suganya Dhandapani

Nanoparticles such as Fe, FeO, CuO, Zn, ZnO, and Se play an important role in aquaculture. These compounds are essential minerals to increase fish growth and supplemen-tation in feeds because practical feedstuffs contain low levels of these microminerals. Dietary supplementation of nanoparticles produces greater survival, growth, antioxidant levels and immunity of aquatic organisms including fishes. The present study deals with the impact of different quantity of green synthesized iron oxide nanoparticles on growth, enzymatic, biochemical changes, and hematology of Zebrafish Danio rerio. Anisomeles malabarica leaf extract was used for the synthesis of iron oxide nano-particles and characterized by XRD, SEM, EDAX, and FT-IR. Six feeds were prepared with different quantity of synthesized iron oxide nanoparticles (F1 - Control, F2 -10 mg, F3 – 20mg, F4 – 30mg and F5 – 50mg) and feed ingredients are fish meal, groundnut oilcake, wheat flour, and tapioca flour. Growth, digestive enzymes (protease, amylase, and lipase), biochemical constituents (total protein, carbohydrate and lipid) and hematological parameters were estimated after 30 days. ‘t’ test and One-way ANOVA was used for the analysis. The feed consumption, feed conversion efficiency, weight gain, percentage growth, relative growth rate, assimilation, metabolism, gross and net growth efficiency were higher in F5 containing 40mg of green synthesized iron oxide nanoparticles (1.98 ± 0.29, 0.19 ± 0.02, 0.85 ± 0.32, 2.88 ± 0.74, 2.21 ± 0.70, 1.61 ± 0.11, 44.31 ± 10.58 and 42.11 ± 9.46). 40mg of iron oxide nanoparticles supplemented feed enhanced the digestive enzymes and biochemical constituents of Zebrafish. The results conclude that 40 mg iron oxide nanoparticles supplemented feed enhanced the growth, digestive enzymes, biochemical constituents, and hematology of Zebrafish. 


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


Sign in / Sign up

Export Citation Format

Share Document