scholarly journals Efficient Conformal Parameterization of Multiply-Connected Surfaces Using Quasi-Conformal Theory

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
Gary P. T. Choi
2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


The field equations in the neighbourhood of a particle for a spherically symmetric metric in the conformal theory of gravitation put forward by Hoyle & Narlikar are examined. As the theory is conformally invariant, one can use different but physically equivalent conformal frames to study the equations. Previously these equations were studied in a conformal frame which, though suitable far away from the isolated particle, turns out not to be suitable in the neighbourhood of the particle. In the present paper a solution in a conformal frame is obtained that is suitable for considering regions near the particle. The solution thus obtained differs from the previous one in several respects. For example, it has no coordinate singularity for any non-zero value of the radial variable, unlike the previous solution or the Schwarzschild solution. It is also shown with the use of this solution that in this theory distant matter has an effect on local geometry.


2002 ◽  
Vol 9 (2) ◽  
pp. 367-382
Author(s):  
Z. Samsonia ◽  
L. Zivzivadze

Abstract Doubly-connected and triply-connected domains close to each other in a certain sense are considered. Some questions connected with conformal and quasiconformal mappings of such domains are studied using integral equations.


2000 ◽  
Vol 15 (24) ◽  
pp. 1491-1495 ◽  
Author(s):  
DANIEL WISNIVESKY

We discuss the quantum problem of a charged particle in a multiply connected region encircling a magnetic tube, using a theory in which space and internal coordinates are derived from the parameters of a linear group of transformations (group space quantum theory). Based only on symmetry considerations, we show that, the magnetic flux in the tube must be quantized in multiples of the Dirac monopole charge.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
M. Asadi ◽  
H. Soltanpanahi ◽  
F. Taghinavaz

Abstract We investigate the time-dependent perturbations of strongly coupled $$ \mathcal{N} $$ N = 4 SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS5×S5. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point θ = $$ \frac{1}{2} $$ 1 2 . Moreover, we propose a relation between symmetry enhancement of the underlying theory and vanishing of the only third order hydrodynamic transport coefficient θ1, which appears in the shear dispersion relation of a conformal theory on a flat background.


1984 ◽  
Vol 96 ◽  
pp. 23-28
Author(s):  
Lee A. Rubel

The notion of internal function enters naturally in the study of factorization of function in Lumer’s Hardy spaces—see [RUB], where this aspect is developed in some detail.


Sign in / Sign up

Export Citation Format

Share Document