Diatom-based paleolimnological reconstruction of regional climate and local land-use change from a protected sinkhole lake in southern Florida, USA

2011 ◽  
Vol 49 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Amanda K. Quillen ◽  
Evelyn E. Gaiser ◽  
Eric C. Grimm
2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Diana Rechid ◽  
Vanessa Reinhart ◽  
Christina Asmus ◽  
Edouard L. Davin ◽  
...  

<p>Land-use and land cover (LULC) are continuously changing due to environmental changes and anthropogenic activities. Many observational and modeling studies show that LULC changes are important drivers altering land surface feedbacks and land-atmosphere exchange processes that have substantial impact on climate on the regional and local scale. Yet, most long-term regional climate modeling studies do not account for these changes. Therefore, within the WCRP CORDEX Flagship Pilot Study LUCAS (Land Use Change Across Scales) a new workflow was developed to generate high-resolution annual land cover change time series based on past reconstructions and future projections. First, the high-resolution global land cover dataset ESA-CCI LC (~300 m resolution) is aggregated and converted to a 0.1° resolution, fractional plant functional type (PFT) dataset. Second, the land use change information from the land-use harmonized dataset (LUH2), provided at 0.25° resolution as input for CMIP6 experiments, is translated into PFT changes employing a newly developed land use translator (LUT). The new LUT was first applied to the EURO-CORDEX domain. The resulting LULC maps for past and future - the LUCAS LUC dataset - can be applied as land use forcing to the next generation RCM simulations for downscaling CMIP6 by the EURO-CORDEX community and in the framework of FPS LUCAS. The dataset includes land cover and land management practices changes important for the regional and local scale such as urbanization and irrigation. The LUCAS LUC workflow is applied to further CORDEX domains, such as Australasia and North America. The resulting past and future land cover changes will be presented, and challenges regarding the application of the new workflow to different regions will be addressed. In addition, issues related to the implementation of the dataset into different RCMs will be discussed.</p>


Author(s):  
Jonathan G. Fairman ◽  
Udaysankar S. Nair ◽  
Sundar A. Christopher ◽  
Thomas Mölg

EDIS ◽  
2009 ◽  
Vol 2009 (4) ◽  
Author(s):  
Alan L. Wright ◽  
Edward A. Hanlon ◽  
J. Mabry McCray ◽  
David D. Sui

SL-290, a 5-page fact sheet by Alan L. Wright, Edward A. Hanlon, J. Mabry McCray, and David D. Sui, provides growers in the Everglades Agricultural Area with information about the organic soils in southern Florida and their management to improve crop production while also reducing adverse environmental effects, especially during times of land use change. Includes Additional sources of information. Published by the UF Department of Soil and Water Science, May 2009. SL 290/SS503: Fate of Phosphorus in Everglades Agricultrual Soils after Fertilizer Application (ufl.edu)


2015 ◽  
Vol 12 (1) ◽  
pp. 405-448 ◽  
Author(s):  
F. Richter ◽  
C. Döring ◽  
M. Jansen ◽  
O. Panferov ◽  
U. Spank ◽  
...  

Abstract. Among the different bioenergy sources short rotation coppices (SRC) with poplar and willow trees are one of the mostly promising options in Europe. SRC not only provide woody biomass, but often additional ecosystem services. One known shortcoming is the possible negative effect on groundwater recharge, caused by potentially higher rates of evapotranspiration compared to annual crops. An assessment of land use change by means of hydrological models and taking into account the changing climate can help to minimize negative and maximize positive ecological effects at regional and local scales, e.g. to regional climate and/or to adjacent ecosystems. The present study implemented the hydrological model system WaSim for such assessment. The hydrological analysis requires the adequate description of the vegetation cover to simulate the processes like soil evaporation, interception evaporation and transpiration. The uncertainties in the vegetation parameterisations might result in implausible model results. The present study shows that leaf area index (LAI), stomatal resistance (Rsc) as well as the beginning and length of the growing season are the sensitive parameters when investigating the effects of an enhanced cultivation of SRC on water budget or on groundwater recharge. Mostly sensitive is the description of the beginning of the growing season. When this estimation is wrong, the accuracy of LAI and Rsc description plays a minor role. The analyses done here illustrate that the use of locally measured vegetation parameters like maximal LAI and meteorological variables like air temperature, to estimate the beginning of the growing season, produce better results than literature data or data from remote network stations. However the direct implementation of locally measured or literature data on e.g. stomatal resistance is not always advisable. The adjustment of locally vegetation parameterisation shows the best model evaluation. Additionally the adjusted course of LAI and Rsc is less sensitive to different estimates for leaf unfolding, due to a slower increase in spring compared to a step functional annual course.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhanqi Wang ◽  
Bingqing Li ◽  
Jun Yang

With the frequent human activities operating on the earth, the impacts of land use change on the regional climate are increasingly perceptible. Under the background of the rapid urbanization, understanding the impacts of land use change on the regional climate change is vital and significant. In this study, we investigated the relationships between land use change and regional climate change through a structural equation model. Southern China was selected as the study area for its rapid urbanization and different structure of land use among its counties. The results indicate that the path coefficients of “vegetation,” “Urban and surrounding area,” and “other” to “climate” are −0.42, 0.20, and 0.46, respectively. Adding vegetation area is the main method to mitigate regional climate change. Urban and surrounding area and other areas influence regional climate by increasing temperature and precipitation to a certain extent. Adding grassland and forestry, restraining sprawl of built-up area, and making the most use of unused land are efficient ways to mitigate the regional climate change in Southern China. The results can provide feasible recommendations to land use policy maker.


2013 ◽  
Vol 118 (20) ◽  
pp. 11,577-11,588 ◽  
Author(s):  
M. Trail ◽  
A.P. Tsimpidi ◽  
P. Liu ◽  
K. Tsigaridis ◽  
Y. Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document