Scientific Literacy, Environmental Issues, and PISA 2006: The 2008 Paul F-Brandwein Lecture

2008 ◽  
Vol 17 (6) ◽  
pp. 566-585 ◽  
Author(s):  
Rodger W. Bybee
2014 ◽  
Vol 4 (2) ◽  
pp. 93-107
Author(s):  
H. Gonca USTA ◽  
R. Nükhet ÇIKRIKÇI-DEMİRTAŞLI

2016 ◽  
Vol 3 (9) ◽  
pp. 160360 ◽  
Author(s):  
Aaron Drummond ◽  
Matthew A. Palmer ◽  
James D. Sauer

Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies.


2009 ◽  
Vol 46 (8) ◽  
pp. 862-864 ◽  
Author(s):  
Rodger Bybee ◽  
Peter Fensham ◽  
Robert Laurie

2018 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Kultida Chanapimuk ◽  
Sureeporn Sawangmek ◽  
Pranee Nangngam

The environmental issues surrounding agrochemical products facing people today include serious health and ecological problems.  Scientific literacy is necessary for students to understand scientific knowledge and get ready for the future world.  Therefore, this action research aims to promote scientific literacy, in the area of plant growth by using the Science, Technology, Society and Environment (STSE) approach that consists of 4 steps: 1) motivation; 2) exploration; 3) brainstorming; and 4) decision making.  The participants are 35 special program students in grade 11. The PISA-like test and worksheets were used to collect data.  Content analysis and triangulation were used to indicate the development of scientific literacy.  The findings show that the students have better scientific literacy and higher competencies in explaining phenomena scientifically, evaluating and designing scientific inquiry and interpreting data and evidence scientifically.  This study suggests that student collaboration is essential to improve the scientific literacy of students.


2021 ◽  
Vol 29 ◽  
Author(s):  
Ruth Zuzovsky

Different approaches are employed when teaching environmental issues. One approach, termed the “environmental scientific approach,” perceives environmental education as part of life or earth sciences, providing factual, scientific knowledge. Another approach, termed the “environmental sustainability citizenry approach”, emphasizes sustainability and balancing between the need to move forward technologically and economically and the need to protect the environments in which we and others live. A synthesis of the two approaches encompasses both environmental scientific literacy and environmental sustainability citizenry. This article examines the degree to which changes in the emphasis given to the two approaches worldwide and in Israel impacted the achievements of Israeli eighth graders in this field. Based primarily on data from the Third Mathematics and Science Study-(TIMSS), the findings indicate that the TIMSS tests were biased toward the “environmental scientific” approach, in contrast to the more recent and accepted trends of the “environmental sustainability citizenry approach” embedded in Israeli curriculum. The assessment of environmental achievements in Israel, that was based on the biased test of the TIMSS study, fails to accurately reflect both the curricular changes that have taken place in Israel in this field and students' achievements, thus rendering this assessment inappropriate for this purpose.


2009 ◽  
Vol 46 (8) ◽  
pp. 865-883 ◽  
Author(s):  
Rodger Bybee ◽  
Barry McCrae ◽  
Robert Laurie

2009 ◽  
Vol 3 (1) ◽  
Author(s):  
Anne Kristine Byhring ◽  
Erik Knain

Naturfagdelen av PISA-undersøkelsen presenterer resultater for tre kompetanseområder: 1) identifisere naturvitenskapelige problemstillinger, 2) forklare fenomener naturvitenskapelig og 3) bruke naturvitenskapelig evidens. Områdene er en operasjonalisering av definisjonen av scientific literacy i PISAs rammeverk. Siden PISA-undersøkelsene viser en nedadgående trend for norske elevers kompetanser fra 2000 til 2006, er det behov for mer innsikt i hvordan elever kan bli dyktigere, og i hva slags kompetanse elevene trenger i et livslangt perspektiv. Vi diskuterer kompetansebegrepet i naturfagdelen av den norske PISA-rapporten. Hensikten er å komme nærmere siktemålet med kompetansebegrepet. Vi belyser PISA-rapportens operasjonalisering av scientific literacy fra to teoretiske perspektiv: kompetanse som funksjonelt og helhetlig begrep og scientific literacy som en tekstlig kompetanse. Samspillet mellom komponentene i PISAs rammeverk analyseres ut fra en helhetlig forståelse av kompetanser og et syn på kompetanse som situasjonsavhengig. Funksjonell kompetanse utøves i situasjonen ofte som et møte mellom fenomener og tekster som representerer fenomenene. Vi diskuterer den funksjonelle kompetansen ved å vise samspillet mellom de tre kompetanseområdene (PISAs operasjonalisering av scientific literacy) med et eksempel fra en oppgave i PISA 2006. Vi vektlegger å finne pragmatisk mening i tekster. Det er en viktig kompetanse for å kunne bruke tekster som funksjonelle verktøy. En situert, helhetlig og funksjonell forståelse og samspillet mellom kompetansene knyttes til kunnskapsutvikling i skolen og til vurdering. Da norske elever skårer særlig svakt på den tredje kompetansen, "kunne bruke naturvitenskapelig evidens", tar vi spesielt opp denne kompetansen i tilknytning til framtidas miljøutfordringer og til elevenes behov for kompetanse og mestringsstrategier for å møte usikkerhet. Vi konkluderer med at PISAs rammeverk støtter fagdidaktiske tilnærminger som gjør elever i stand til å håndtere enighet og uenighet, til å vurdere bevismateriale og kilder kritisk og til å argumentere såvel for det de vet, som for det de vil.


1998 ◽  
Vol 7 (3) ◽  
pp. 225-236 ◽  
Author(s):  
Keith Bishop ◽  
William Scott

Environmental education tends to be characterized by a rhetoric of action-taking, and the call for the development of personal action competence is one manifestation of this. This paper critically examines recent work on the concept of action competence. This is seen as a set of capabilities which equip people with the ability to take purposive and focused action, and which embodies a democratic commitment to be participants in the continuing shaping of society—on their own terms and in their own ways. Action competence is seen by some as a crucial outcome for environmental education because it brings together the processes and practices of education with the need to develop democratic citizenship skills and values, and with the nature of the ecological, social and environmental crises facing the world. This paper acknowledges the contribution such concepts make to environmental education, but takes issue with a tendency within action competence to undervalue the place of science in the construction of knowledge and understanding of environmental issues. We argue that, despíte being dismissed by many environmental educators, science has a significant role to play within effective environmental education, particularly through the achievement of scientific literacy and capability, both of which seem fundamental to an understanding of science, environmental issues, and their interrelationship. The paper argues for a more pragmatic conceptualization of action competence in order to encourage broadly-based and scientifically-attentive conceptions of environmental education.


Sign in / Sign up

Export Citation Format

Share Document