scholarly journals Biology Undergraduate Students’ Graphing Practice in Digital Versus Pen and Paper Graphing Environments

Author(s):  
Stephanie M. Gardner ◽  
Elizabeth Suazo-Flores ◽  
Susan Maruca ◽  
Joel K. Abraham ◽  
Anupriya Karippadath ◽  
...  

AbstractGraphing is an important practice for scientists and in K-16 science curricula. Graphs can be constructed using an array of software packages as well as by hand, with pen-and-paper. However, we have an incomplete understanding of how students’ graphing practice vary by graphing environment; differences could affect how best to teach and assess graphing. Here we explore the role of two graphing environments in students’ graphing practice. We studied 43 undergraduate biology students’ graphing practice using either pen-and-paper (PP) (n = 21 students) or a digital graphing tool GraphSmarts (GS) (n = 22 students). Participants’ graphs and verbal justifications were analyzed to identify features such as the variables plotted, number of graphs created, raw data versus summarized data plotted, and graph types (e.g., scatter plot, line graph, or bar graph) as well as participants’ reasoning for their graphing choices. Several aspects of participant graphs were similar regardless of graphing environment, including plotting raw vs. summarized data, graph type, and overall graph quality, while GS participants were more likely to plot the most relevant variables. In GS, participants could easily make more graphs than in PP and this may have helped some participants show latent features of their graphing practice. Those students using PP tended to focus more on ease of constructing the graph than GS. This study illuminates how the different characteristics of the graphing environment have implications for instruction and interpretation of assessments of student graphing practices.

2017 ◽  
Vol 16 (4) ◽  
pp. ar66 ◽  
Author(s):  
Liz Stanhope ◽  
Laura Ziegler ◽  
Tabassum Haque ◽  
Laura Le ◽  
Marcelo Vinces ◽  
...  

Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative skills of undergraduate students within a biological context. The instrument was developed by an interdisciplinary team of educators and aligns with skills included in national reports such as BIO2010, Scientific Foundations for Future Physicians, and Vision and Change. Undergraduate biology educators also confirmed the importance of items included in the instrument. The current version of the BioSQuaRE was developed through an iterative process using data from students at 12 postsecondary institutions. A psychometric analysis of these data provides multiple lines of evidence for the validity of inferences made using the instrument. Our results suggest that the BioSQuaRE will prove useful to faculty and departments interested in helping students acquire the quantitative competencies they need to successfully pursue biology, and useful to biology students by communicating the importance of quantitative skills. We invite educators to use the BioSQuaRE at their own institutions.


2016 ◽  
Vol 78 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Jennifer J. Weber ◽  
Laura B. Vary ◽  
Colette E.S. Berg ◽  
Beth H. Ansaldi ◽  
Steven J. Franks

To teach the most central concepts in evolutionary biology, we present an activity in pollination biology. Students play the role of either pollinator or flower and work through a set of scenarios to maximize plant fitness. This “Pollination Game” facilitates critical and inquiry-based thinking, and we accompany each round of the exercise with a set of discussion questions and answers. We have piloted and fine tuned this exercise with high school students, and improved the exercise with the input of high school teachers at a teaching conference. The activity could easily be adapted for freshman undergraduate students.


2013 ◽  
Vol 12 (3) ◽  
pp. 483-493 ◽  
Author(s):  
Steven T. Kalinowski ◽  
Mary J. Leonard ◽  
Tessa M. Andrews ◽  
Andrea R. Litt

Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students’ understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities.


2013 ◽  
Vol 75 (8) ◽  
pp. 578-581 ◽  
Author(s):  
Andrea Weeks ◽  
Beverly Bachman ◽  
Sarah Josway ◽  
Brittany North ◽  
Mirian T. N. Tsuchiya

Microscopy and precise observation are essential skills that are challenging to teach effectively to large numbers of undergraduate biology students. We implemented student-driven digital imaging assignments for microscopy in a large-enrollment laboratory for organismal biology. We detail how we promoted student engagement with the material and how we assessed student learning in both formative and summative formats using digital images. Students worked in pairs to collect over 60 digital images of their microscopic observations over the semester and then individually created electronic portfolios, which were submitted for a grade.


2015 ◽  
Vol 14 (3) ◽  
pp. ar29 ◽  
Author(s):  
Kathryn I. Danielson ◽  
Kimberly D. Tanner

Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification.


2016 ◽  
Vol 15 (2) ◽  
pp. ar12 ◽  
Author(s):  
Caleb M. Trujillo ◽  
Trevor R. Anderson ◽  
Nancy J. Pelaez

When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms.


2017 ◽  
Vol 16 (4) ◽  
pp. es4 ◽  
Author(s):  
M. Elizabeth Barnes ◽  
Sara E. Brownell

Low acceptance of evolution among undergraduate students is common and is best predicted by religious beliefs. Decreasing students’ perceived conflict between religion and evolution could increase their acceptance of evolution. However, college biology instructors may struggle with trying to decrease students’ perceived conflict between religion and evolution because of differences in the religious cultures and beliefs of instructors and students. Although a large percentage of undergraduate students in evolution courses are religious, most instructors teaching evolution are not. To consider differences between the secular culture of many college instructors and the religious culture of many students, we propose using a lens of cultural competence to create effective evolution education. Cultural competence is the ability of individuals from one culture (in this case, primarily secular instructors who are teaching evolution) to bridge cultural differences and effectively communicate with individuals from a different culture (in this case, primarily religious undergraduate biology students). We call this new framework Religious Cultural Competence in Evolution Education (ReCCEE). In this essay, we describe a suite of culturally competent practices that can help instructors reduce students’ perceived conflict between evolution and religion, increase students’ acceptance of evolution, and help create more inclusive undergraduate biology classrooms.


Author(s):  
Luis J. Rodríguez-Muñiz ◽  
Álvaro Aguilar-González ◽  
Ariel Lindorff ◽  
Laura Muñiz-Rodríguez

AbstractPrevious research in mathematics education has explored teachers’ conceptions of mathematics and its teaching and learning, and how their instructional tendencies (e.g., “traditional”, “technological”, “spontaneous” and “investigative”) relate to these conceptions. However, empirical evidence on this topic from large samples of pre-service teachers is limited. This study adapts and validates an instrument originally designed for in-service teachers to analyse the conceptions of mathematics and mathematics teaching and learning. This was done in a sample of undergraduate students in several different degree programmes (primary education, mathematics, and the education itinerary in psychology) in a Spanish university. Existing theory about instructional tendencies and conceptions of mathematics teaching and learning that was developed in the context of in-service teachers is then re-examined in the context of empirical evidence from this sample of individuals (all potential future teachers) without teaching experience. Results show that items from the instrument can be separated into four factors focussed on investigative stances, the role of textbooks, the role of teachers and lesson planning. Individual participants are not characterised by single tendencies; rather, they can be described in terms of several combinations of tendencies, grouped into four clusters. In line with the previous literature on in-service teachers, results suggest that conceptions of mathematics and its teaching and learning are not best captured by rigid, sharply delineated profiles. Rather, individuals configure their own conceptions in terms of combinations of different characteristics of prototypical tendencies.


2008 ◽  
Vol 20 (3) ◽  
pp. 97-105 ◽  
Author(s):  
Smita C. Banerjee ◽  
Kathryn Greene ◽  
Marina Krcmar ◽  
Zhanna Bagdasarov ◽  
Dovile Ruginyte

This study demonstrates the significance of individual difference factors, particularly gender and sensation seeking, in predicting media choice (examined through hypothetical descriptions of films that participants anticipated they would view). This study used a 2 (Positive mood/negative mood) × 2 (High arousal/low arousal) within-subject design with 544 undergraduate students recruited from a large northeastern university in the United States. Results showed that happy films and high arousal films were preferred over sad films and low-arousal films, respectively. In terms of gender differences, female viewers reported a greater preference than male viewers for happy-mood films. Also, male viewers reported a greater preference for high-arousal films compared to female viewers, and female viewers reported a greater preference for low-arousal films compared to male viewers. Finally, high sensation seekers reported a preference for high-arousal films. Implications for research design and importance of exploring media characteristics are discussed.


2016 ◽  
Author(s):  
Mikah J. Pritchard ◽  
Trisha A. Turner ◽  
Ellen L. Usher ◽  
Faith L. Jones

Sign in / Sign up

Export Citation Format

Share Document