The effects of proteins and phospholipids on the network structure of natural rubber: a rheological study in bulk and in solution

2020 ◽  
Vol 27 (6) ◽  
Author(s):  
Cheng Huang ◽  
Junqi Zhang ◽  
Xufu Cai ◽  
Guangsu Huang ◽  
Jinrong Wu
2016 ◽  
Vol 49 (5) ◽  
pp. 381-396 ◽  
Author(s):  
Farzad A Nobari Azar ◽  
Murat Şen

Natural rubber/chloroprene rubber (NR/CR) blends are among the commonly used rubber blends in industry and continuously are exposed to severe weather changes. To investigate the effects of accelerator type on the network structure and stress relaxation of unaged and aged NR/CE vulcanizates, tetramethyl thiuram disulfide, 2-mercaptobenzothiazole, and diphenyl guanidine accelerators have been chosen to represent fast, moderate, and slow accelerator groups, respectively. Three batches have been prepared with exactly the same components and mixing conditions differing only in accelerator type. Temperatures scanning stress relaxation and pulse nuclear magnetic resonance techniques have been used to reveal the structural changes of differently accelerated rubber blends before and after weathering. Nonoxidative thermal decomposition analyses have been carried out using a thermogravimetric analyzer. Results indicate that there is a strong interdependence between accelerator type and stress relaxation behavior, network structure, cross-linking density, and aging behavior of the blends. Accelerator type also affects decomposition energy of the blends.


1964 ◽  
Vol 37 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Bryan Ellis ◽  
G. N. Welding

Abstract A procedure is described for estimating indirectly the contribution of vulcanization reactions to the build-up of network structure. This method is useful with technically important vulcanizing systems for which no direct method of estimation has been found. Errors of the theory of high elasticity are avoided by using published results, such as those of Moore and Watson of direct chemical estimates obtained with a special vulcanizing system that is chemically well understood. Reliance on the theories of end correction and swelling is also avoided by using published experimental relations. The method is applicable to any linear primary polymer of arbitrary molecular weight and any suitable swelling liquid, for which the required reference data have been obtained.


1972 ◽  
Vol 45 (4) ◽  
pp. 1051-1063 ◽  
Author(s):  
G. M. Doyle ◽  
R. E. Humphreys ◽  
R. M. Russell

Abstract A comparison is made of the composition and properties of the different rubber vulcanizate networks obtained by varying the ratio of sulfur to sulfenamide accelerator and by the thermal aging of vulcanizates containing predominantly polysulfide crosslinks. It is concluded that the changes in network structure which can take place, for example, during the service life of natural rubber tires are not the direct cause of failures of the type associated with rubber fatigue at high temperatures. However, a reduction in the total number of crosslinks can accelerate failure by increasing the amount of heat generated during flexing. More stable networks giving improved resistance to fatigue at high operating temperatures are obtained by the use of higher ratios of accelerator to sulfur than are conventionally employed.


1960 ◽  
Vol 33 (2) ◽  
pp. 490-501
Author(s):  
Z. T. Ossefort

Abstract It has been shown that the age resistance of elastomeric vulcanizates is influenced to a very marked degree by residues formed in situ in the vulcanizate during the curing process. By a dual process of removal of these residues and incorporation of selected ingredients subsequent to vulcanization, it has been shown that age resistance (as measured by accelerated oven-aging tests at 212° F) in rubbers cured by sulfur and/or sulfur bearing accelerators, is a prime function of these residues and nearly independent of the stability of the network structure. An extremely active inhibitor is formed in situ during vulcanization of SBR and natural rubber using thiuram accelerators. This inhibitor can be used to “reinhibit” acetone-extracted accelerator-cured rubber. When added to sulfur/accelerator, peroxide, or radiation-cured vulcanizates, it improves their age resistance, but only in the case of the sulfur/accelerator cured rubber is this improvement better than with conventional inhibitors. This leads to the conclusion that the efficiency with which an inhibitor protects a vulcanizate varies widely, and conversely it appears that certain types of network structures are more readily protected or that certain inhibitors can function more efficiently in the protection of certain structures than others. In the case of natural rubber cured with TMTD (zinc oxide present), the bulk of the accelerator residue is ZnDMDC, and this residue has been shown to function as a very efficient antioxidant when incorporated into acetone-extracted, accelerator-cured vulcanizate. It is no more effective than conventional inhibitors, however, when incorporated into an acetone-extracted, sulfur/accelerator-cured vulcanizate. Finally, it has been shown that acetone extraction of the various vulcanizates may lead to improvement or worsening of their age resistance, depending upon the nature of the residues resulting from the curing process.


2011 ◽  
Vol 122 (2) ◽  
pp. 1300-1315 ◽  
Author(s):  
Atsushi Kato ◽  
Toshiya Suda ◽  
Yuko Ikeda ◽  
Shinzo Kohjiya

1956 ◽  
Vol 29 (2) ◽  
pp. 398-408
Author(s):  
J. P. Berry ◽  
W. F. Watson

Abstract Direct chemical investigation of the degradation of polymeric networks is usually impracticable owing to the experimental difficulty of insolubility and to the fact that reaction at only a small proportion of network units is sufficient to cause marked alteration of network structure. Resort has, therefore, to be made to the measurement of physical changes brought about by the chemical reactions. Change of tension at constant extension is a useful measure for this purpose, since statistical elasticity theory predicts a direct proportionality between the tension and the number of chains supporting the stress. The present purpose is: (1) to describe a stress relaxometer possessing certain advantages over previous models; (2) to report on the stress relaxation of peroxide-crosslinked rubber, which can be considered from a chemical viewpoint to be the simplest possible rubber network; (3) to point out some complications in the relaxation behavior of sulfur vulcanizates, and (4) to interpret the shapes of stress relaxation curves.


Seikei-Kakou ◽  
2016 ◽  
Vol 28 (6) ◽  
pp. 210-213
Author(s):  
Atsushi Kato ◽  
Yuko Ikeda ◽  
Shinzo Kohjiya

Sign in / Sign up

Export Citation Format

Share Document