scholarly journals Heat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticles

2020 ◽  
Vol 141 (6) ◽  
pp. 2613-2623 ◽  
Author(s):  
E. Elanchezhian ◽  
R. Nirmalkumar ◽  
M. Balamurugan ◽  
K. Mohana ◽  
K. M. Prabu ◽  
...  
Filomat ◽  
2019 ◽  
Vol 33 (14) ◽  
pp. 4627-4653 ◽  
Author(s):  
Noor Khan

Mixed convection in magnetohydrodynamic second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction is considered. Buongiorno?s nanofluid model is used incorporating the buoyancy forces and Darcy-Forchheimer effect. Nanoparticles increase the thermal conduction in bioconvection flow and microorganisms simultaneously increase the stability of nanofluids. For the constructive (or generation) chemical reaction, the mass transfer displays an increasing behavior. Ordinary differential equations together with the boundary conditions are obtained through the similarity variables from the governing equations of the problem, which are solved by the Homotopy Analysis Method (HAM). The investigations are presented through graphs and the results are interpreted which depict the influences of all the embedded parameters.


Author(s):  
Samaira Aziz ◽  
Iftikhar Ahmad ◽  
Sami Ullah Khan ◽  
Nasir Ali

The main focus of this research is to explore the consequences of motile gyrotactic microorganisms for unsteady Williamson nanofluid induced by bidirectional periodically accelerated surface. The combined features of magnetic and buoyancy forces with association of nanoparticles and swimming microorganisms developed the nanofluid bioconvection. Thermal radiation and heat generation aspects are considered to analyze the heat transportation phenomenon. The consequences of activation energy and chemical reaction are further explored for physical relevance. Appropriate transformations have been employed to transmute the formulated nonlinear equations into dimensionless form, and then analytically elucidated by homotopic technique. The effect of diverse dominant parameters on velocities, concentration, temperature, motile microorganisms as well as skin friction coefficients are deliberated through various graphs while the deviation in local Sherwood, Nusselt and motile density numbers have been deliberated by numerical data in tabular form. It is noticed that both velocity components periodically drop for augmentation in Williamson parameter. Current investigation accentuated that higher reaction rate leads to decay in concentration distribution, but impact of activation energy parameter is rather conflicting. Furthermore, the profile of motile microorganism leads to be intensified for higher magnetic parameter, while opposite trend is perceived for bioconvected Peclet and Lewis numbers.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Tanveer Sajid ◽  
Muhammad Sagheer ◽  
Shafqat Hussain ◽  
Faisal Shahzad

AbstractThe double-diffusive tangent hyperbolic nanofluid containing motile gyrotactic microorganisms and magnetohydrodynamics past a stretching sheet is examined. By adopting the scaling group of transformation, the governing equations of motion are transformed into a system of nonlinear ordinary differential equations. The Keller box scheme, a finite difference method, has been employed for the solution of the nonlinear ordinary differential equations. The behaviour of the working fluid against various parameters of physical nature has been analyzed through graphs and tables. The behaviour of different physical quantities of interest such as heat transfer rate, density of the motile gyrotactic microorganisms and mass transfer rate is also discussed in the form of tables and graphs. It is found that the modified Dufour parameter has an increasing effect on the temperature profile. The solute profile is observed to decay as a result of an augmentation in the nanofluid Lewis number.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Khaled Al‐Farhany ◽  
Mohammed A. Alomari ◽  
Ahmed Al‐Saadi ◽  
Ali Chamkha ◽  
Hakan F. Öztop ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document