Convective flow of a Maxwell hybrid nanofluid due to pressure gradient in a channel

Author(s):  
Rizwan Ali ◽  
Muhammad Imran Asjad ◽  
Ali Aldalbahi ◽  
Mohammad Rahimi-Gorji ◽  
Mostafizur Rahaman
2019 ◽  
Vol 97 (12) ◽  
pp. 1239-1252
Author(s):  
Naheeda Iftikhar ◽  
Abdul Rehman ◽  
Hina Sadaf ◽  
Saleem Iqbal

This paper contains the analytical investigation of magnetohydrodynamic (MHD) flow of copper/Al2O3–water hybrid nanofluid with unstable peristaltic motion. Three different geometries (bricks, cylinder, and platelets) along with velocity and thermal slip conditions are studied in detail to reach the precise solution. Flow geometry of a non-uniform tube of finite length, experimental values of base fluid, and considered nanoparticles are taken into account to examine the theoretical investigation of formulated equations. Dimensionless control equations, which are subject to physically realistic boundary conditions, are closely studied to obtain precise results. The shape effects of nanoparticles on velocity, temperature distribution, and heat transfer on the length of the non-uniform tube with variation of the various flow parameters are discussed in a graphical description to understand the theoretical aspects to validate the medical analysis. The observations from the analysis state that copper/Al2O3–water carry maximum velocity for smaller values of slip parameter. Temperature distributions for heat absorption parameter are more significant as fluid flow accelerates when large values are chosen. Large values of thermal slip parameter yield enhancement in pressure gradient and Cu–water nanofluid has higher impact than hybrid nanofluid. Platelet-shaped nanoparticles of hybrid nanofluid have more significant effect on pressure gradient than cylinder- and brick-shaped nanoparticles of Cu–water nanofluid. An intrinsic property of peristaltic transport (i.e., trapping) is also discussed. The trapped bolus decreases for platelets and cylinder-shaped nanoparticles, whereas, the size of the trapped bolus increases for brick-shaped nanoparticles. This model is applicable to a drug delivery system and to design the micro-peristaltic pump for transporting nanofluids.


Author(s):  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
R. Naveen Kumar ◽  
R.J. Punith Gowda ◽  
...  

CFD letters ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 45-57
Author(s):  
Badr Ali Bzya Albeshri ◽  
Nazrul Islam ◽  
Ahmad Yahya Bokhary ◽  
Amjad Ali Pasha

Nanofluids occupy a large place in many fields of technology due its improved heat transfer and pressure drop characteristics. Very recently, a new type of nanofluid, known as hybrid nanofluid, which consists of a mixture of two different nanoparticles suspended in the base fluid has been found to be the most emerging heat transfer fluid. It is well also established that entrance region effect enhances heat transfer rate. The present study deals with numerical investigations of the hydrodynamic behavior of the laminar mixed convective flow of a hybrid nanofluid in the entrance region of a horizontal annulus. A thermal boundary condition of uniform heat flux at the inner wall and an adiabatic outer wall is selected. The SIMPLER numerical algorithm is adopted in the present study. The hybrid nanofluid consists of water as base fluid and Ag-TiO2 as nanoparticles. The ratio of Ag to TiO2 is maintained as 1:3. The objective of the current study is mainly to analyze the hydrodynamic behavior hybrid nanofluid in the entrance region. The investigation reveals that the effect of the secondary flow due to the buoyancy forces is more intense in the upper part of the annular cross-section. It increases throughout the cross-section until its intensity reaches a maximum and then it becomes weak far downstream. The development of axial flow and temperature field is strongly influenced by the buoyancy forces.


1960 ◽  
Vol 8 (2) ◽  
pp. 227-240 ◽  
Author(s):  
B. R. Morton

An exact solution is presented in this paper for the problem of laminar convective flow under a pressure gradient along a vertical pipe, the walls of which are heated or cooled uniformly; the solution is based on the assumption that velocity and buoyancy profiles far from the pipe entrance do not change with height, and entry-lengt effects are ignored. Two different types of behaviour are found accordingly as the pressure gradient and buoyancy forces act together or in opposition near the centre of the pipe.When an upflow is heated (or a downflow cooled) the velocity near the walls is increased relatively and that near the axis decreased until, for sufficiently large Rayleigh numbers, definite velocity and thermal boundary layers are formed.In the case of cooled upflow (or heated downflow) there is an increase in the velocity across the whole profile for small Rayleigh numbers. As the Rayleigh number is increased the velocity and buoyancy increase, slowly at first and then rapidly, and the solution ‘runs away’ at a Rayleigh number of about 33. For higher Rayleigh numbers, laminar Poiseuille flow of an increasingly complicated profile is theoretically possible, but is unlikely to be found in practise.


Sign in / Sign up

Export Citation Format

Share Document