scholarly journals A review on instance ranking problems in statistical learning

2021 ◽  
Author(s):  
Tino Werner

AbstractRanking problems, also known as preference learning problems, define a widely spread class of statistical learning problems with many applications, including fraud detection, document ranking, medicine, chemistry, credit risk screening, image ranking or media memorability. While there already exist reviews concentrating on specific types of ranking problems like label and object ranking problems, there does not yet seem to exist an overview concentrating on instance ranking problems that both includes developments in distinguishing between different types of instance ranking problems as well as careful discussions about their differences and the applicability of the existing ranking algorithms to them. In instance ranking, one explicitly takes the responses into account with the goal to infer a scoring function which directly maps feature vectors to real-valued ranking scores, in contrast to object ranking problems where the ranks are given as preference information with the goal to learn a permutation. In this article, we systematically review different types of instance ranking problems and the corresponding loss functions resp. goodness criteria. We discuss the difficulties when trying to optimize those criteria. As for a detailed and comprehensive overview of existing machine learning techniques to solve such ranking problems, we systematize existing techniques and recapitulate the corresponding optimization problems in a unified notation. We also discuss to which of the instance ranking problems the respective algorithms are tailored and identify their strengths and limitations. Computational aspects and open research problems are also considered.

Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Author(s):  
Jan Euteneuer ◽  
Annica Gosch ◽  
Cornelius Courts

AbstractBlank cartridge guns are prevalent especially in countries with laws restricting access to conventional firearms, and it is a common misconception that these weapons are harmless and only used as toys or for intimidation. However, although their harming potential is well-documented by numerous reports of accidents, suicides, and homicides, a systematic molecular biological investigation of traces generated by shots from blank cartridges at biological targets has not been done so far. Herein, we investigate the occurrence and analyzability of backspatter generated by shots of different types of blank cartridge guns firing different types of blank ammunition at ballistic gelatin model cubes doped with human blood and radiological contrast agent soaked into a spongious matrix and covered with three different variants of skin simulants. All skin simulants were penetrated, and backspatter was created in 100% of the shots in amounts sufficient for forensic short tandem repeat (STR) typing that resulted in the correct identification of the respective blood donor. Visible backspatter was documented on the muzzle and/or inside the barrel in all cases, and in 75% of cases also on the outer surfaces and on the shooter’s hand(s). Wound cavities were measured and ranged between 1 and 4.5 cm in depth. Discussing our findings, we provide recommendations for finding, recovering, and analyzing trace material from blank guns, and we demonstrate the considerable hazard potential of these devices, which is further emphasized by the presentation of a comprehensive overview of the pertinent literature on injuries inflicted by blank guns.


2012 ◽  
Vol 166-169 ◽  
pp. 493-496
Author(s):  
Roya Kohandel ◽  
Behzad Abdi ◽  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Ahmad Beng Hong Kueh

The Imperialist Competitive Algorithm (ICA) is a novel computational method based on the concept of socio-political motivated strategy, which is usually used to solve different types of optimization problems. This paper presents the optimization of cold-formed channel section subjected to axial compression force utilizing the ICA method. The results are then compared to the Genetic Algorithm (GA) and Sequential Quadratic Programming (SQP) algorithm for validation purpose. The results obtained from the ICA method is in good agreement with the GA and SQP method in terms of weight but slightly different in the geometry shape.


2012 ◽  
Vol 24 (4) ◽  
pp. 1047-1084 ◽  
Author(s):  
Xiao-Tong Yuan ◽  
Shuicheng Yan

We investigate Newton-type optimization methods for solving piecewise linear systems (PLSs) with nondegenerate coefficient matrix. Such systems arise, for example, from the numerical solution of linear complementarity problem, which is useful to model several learning and optimization problems. In this letter, we propose an effective damped Newton method, PLS-DN, to find the exact (up to machine precision) solution of nondegenerate PLSs. PLS-DN exhibits provable semiiterative property, that is, the algorithm converges globally to the exact solution in a finite number of iterations. The rate of convergence is shown to be at least linear before termination. We emphasize the applications of our method in modeling, from a novel perspective of PLSs, some statistical learning problems such as box-constrained least squares, elitist Lasso (Kowalski & Torreesani, 2008 ), and support vector machines (Cortes & Vapnik, 1995 ). Numerical results on synthetic and benchmark data sets are presented to demonstrate the effectiveness and efficiency of PLS-DN on these problems.


2020 ◽  
Author(s):  
Qing Tao

The extrapolation strategy raised by Nesterov, which can accelerate the convergence rate of gradient descent methods by orders of magnitude when dealing with smooth convex objective, has led to tremendous success in training machine learning tasks. In this paper, we theoretically study its strength in the convergence of individual iterates of general non-smooth convex optimization problems, which we name \textit{individual convergence}. We prove that Nesterov's extrapolation is capable of making the individual convergence of projected gradient methods optimal for general convex problems, which is now a challenging problem in the machine learning community. In light of this consideration, a simple modification of the gradient operation suffices to achieve optimal individual convergence for strongly convex problems, which can be regarded as making an interesting step towards the open question about SGD posed by Shamir \cite{shamir2012open}. Furthermore, the derived algorithms are extended to solve regularized non-smooth learning problems in stochastic settings. {\color{blue}They can serve as an alternative to the most basic SGD especially in coping with machine learning problems, where an individual output is needed to guarantee the regularization structure while keeping an optimal rate of convergence.} Typically, our method is applicable as an efficient tool for solving large-scale $l_1$-regularized hinge-loss learning problems. Several real experiments demonstrate that the derived algorithms not only achieve optimal individual convergence rates but also guarantee better sparsity than the averaged solution.


Author(s):  
Mikhail Krechetov ◽  
Jakub Marecek ◽  
Yury Maximov ◽  
Martin Takac

Low-rank methods for semi-definite programming (SDP) have gained a lot of interest recently, especially in machine learning applications. Their analysis often involves determinant-based or Schatten-norm penalties, which are difficult to implement in practice due to high computational efforts. In this paper, we propose Entropy-Penalized Semi-Definite Programming (EP-SDP), which provides a unified framework for a broad class of penalty functions used in practice to promote a low-rank solution. We show that EP-SDP problems admit an efficient numerical algorithm, having (almost) linear time complexity of the gradient computation; this makes it useful for many machine learning and optimization problems. We illustrate the practical efficiency of our approach on several combinatorial optimization and machine learning problems.


Author(s):  
Jose Carrillo ◽  
Shi Jin ◽  
Lei Li ◽  
Yuhua Zhu

We improve recently introduced consensus-based optimization method, proposed in [R. Pinnau, C. Totzeck, O. Tse and S. Martin, Math. Models Methods Appl. Sci., 27(01):183{204, 2017], which is a gradient-free optimization method for general nonconvex functions. We rst replace the isotropic geometric Brownian motion by the component-wise one, thus removing the dimensionality dependence of the drift rate, making the method more competitive for high dimensional optimization problems. Secondly, we utilize the random mini-batch ideas to reduce the computational cost of calculating the weighted average which the individual particles tend to relax toward. For its mean- eld limit{a nonlinear Fokker-Planck equation{we prove, in both time continuous and semi-discrete settings, that the convergence of the method, which is exponential in time, is guaranteed with parameter constraints independent of the dimensionality. We also conduct numerical tests to high dimensional problems to check the success rate of the method.


Sign in / Sign up

Export Citation Format

Share Document