CYP2C9 inhibits the invasion and migration of esophageal squamous cell carcinoma via downregulation of HDAC

Author(s):  
Zhenzhen Jiang ◽  
Xiaoli Zheng ◽  
Weijia Wang ◽  
Liqing Qiu ◽  
Lingrong Yang ◽  
...  
2020 ◽  
Vol 20 ◽  
Author(s):  
Wenbin Wu ◽  
Yangmei Zhang ◽  
Xiaowu Li ◽  
Xiang Wang ◽  
Yuan Yuan

Objective: The purpose of this study was to explore the mechanism of the miR-375/XPR1 axis in esophageal squamous cell carcinoma (ESCC) and provide a new idea for targeted therapy of ESCC. Methods: Differentially expressed genes in GEO and TCGA databases were analyzed by bioinformatics. The expression levels of miR-375 and XPR1 mRNA were detected by qRT-PCR. Protein expression of XPR1 was detected by western blot. Bioinformatics analysis and dual luciferase assay were conducted to confirm the targeting relationship between miR-375 and XPR1. The viability, proliferation, migration and invasion of cells in each treatment group were detected by CCK-8, colony formation, wound healing and Transwell assays. Results: Significantly down-regulated miR-375 and remarkably up-regulated XPR1 were observed in ESCC tissue and cells. Overexpression of miR-375 inhibited proliferation, invasion and migration of ESCC cells, and greatly reduced the promoting effect of XPR1 overexpression on cell proliferation, migration and invasion. Dual luciferase assay confirmed that miR-375 targeted and inhibited XPR1 expression in ESCC. Conclusion: These results demonstrate the regulatory role of the miR-375/XPR1 axis in ESCC cells and provide a new potential target for the precise treatment of patients with ESCC.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jindong Li ◽  
Chengyan Jin ◽  
Lihua Sun ◽  
Bin Wang ◽  
Peiyan Hua ◽  
...  

Abstract Objective Although esophageal squamous cell carcinoma (ESCC)-oriented mechanism has been widely explored, the integrated action of histone deacetylase 2 (HDAC2), microRNA (miR)-503-5p and C-X-C motif chemokine 10 (CXCL10) in ESCC has not been thoroughly explored. Thus, we performed the research to study the role of HDAC2/miR-503-5p/CXCL10 axis in ESCC. Methods ESCC tissues and mucosal tissues (5 cm from cancer tissues) were collected, in which HDAC2, miR-503-5p and CXCL10 expression levels were tested. The mechanism of HDAC2, miR-503-5p and CXCL10 was interpreted. The viability, colony formation ability, apoptosis, invasion and migration abilities of ESCC cells were tested after HDAC2, miR-503-5p or CXCL10 expression was altered. Tumorigenesis in mice was observed to further verify the in vitro effects of HDAC2 and miR-503-5p. Results HDAC2 and CXCL10 were up-regulated while miR-503-5p was down-regulated in ESCC. HDAC2 bound to miR-503-5p and miR-503-5p targeted CXCL10. Silencing HDAC2 or restoring miR-503-5p depressed viability, colony-forming, invasion and migration abilities and enhanced apoptosis of ESCC cells in vitro, as well as suppressed ESCC tumorigenesis in vivo. Inhibition of miR-503-5p or elevation of CXCL10 negated HDAC2 knockout-induced effects on ESCC cells. Conclusion This work elucidates that HDAC2 knockdown retards the process of ESCC by elevating miR-503-5p and inhibiting CXCL10 expression, which may provide a guidance for ESCC management.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hanjing Gao ◽  
Zheng Yan ◽  
Haiyan Sun ◽  
Yanfang Chen

Abstract Background It has been reported that Forkhead transcription family member (FOXA2) regulates esophageal squamous cell carcinoma (ESCC) progression. However, the specific mechanism, by which FOXA2 promotes ESCC malignant progression, remains unclear. Materials and methods QRT-PCR and western blotting were applied to measure FOXA2 expression in ESCC tissues, while CCK-8 assay and Transwell assays were used to investigate the effect of FOXA2 on ESCC. Luciferase reporter assay, followed by fast chromatin immunoprecipitation (ChIP) assay, was used to study the relationship between FOXA2 and ZEB2. Results FOXA2 was significantly increased in ESCC tissues, when compared to normal tissues. Moreover, high expression of FOXA2 was also found in ESCC cells. Knockdown of FOXA2 inhibited ESCC cell proliferation, invasion, and migration. Mechanically, FOXA2 was verified to regulate ZEB2 expression at transcription level. Moreover, ZEB2 reversed the inhibitory effect of FOXA2 on ESCC proliferation, invasion, and migration. The relationship between ZEB2 and FOXA2 in ESCC tissues was negative. Conclusions These results indicate that FOXA2 plays a critical role in ESCC progression and may become a potential candidate target for ESCC treatment.


2014 ◽  
Vol 59 (19) ◽  
pp. 2232-2239 ◽  
Author(s):  
Baoyu Liang ◽  
Yan Wu ◽  
Xu Han ◽  
Xiaofei Zheng ◽  
Qimin Zhan ◽  
...  

2019 ◽  
Vol 41 (9) ◽  
pp. 1263-1272 ◽  
Author(s):  
Peng Nan ◽  
Ting Wang ◽  
Chunxiao Li ◽  
Hui Li ◽  
Jinsong Wang ◽  
...  

Abstract Metastasis-associated protein 1 (MTA1) is upregulated in multiple malignancies and promotes cancer proliferation and metastasis, but whether and how MTA1 promotes esophageal squamous cell carcinoma (ESCC) tumorigenesis remain unanswered. Here, we established an ESCC model in MTA1 transgenic mice induced by the chemical carcinogen 4-nitroquinoline 1-oxide (4-NQO) and found that MTA1 promotes ESCC tumorigenesis in mice. MTA1 overexpression was observed in ESCC cells and clinical ESCC samples. Overexpressed MTA1 increased colony formation and the invasiveness and migration of ESCC cells, whereas knock down of MTA1 in ESCC cells significantly decreased colony formation, invasion and migration in vitro and inhibited the growth of xenograft tumors in vivo. RNA sequencing (RNA-seq) analysis combined with western blot assays revealed that MTA1 promotes carcinogenesis by enhancing MEK/ERK/p90RSK signaling. The phosphorylation of MEK, ERK and their downstream target p90RSK was significantly decreased after MTA1 knockdown in ESCC cells and was increased in MTA1-overexpressing cells. Moreover, colony formation, invasion and migration potential were dramatically suppressed when cells overexpressing MTA1 were treated with MEK (PD0325901) or ERK (SCH772948) inhibitors. In conclusion, MTA1 plays a pivotal oncogenic role in ESCC tumorigenesis and development through activating the MEK/ERK/p90RSK pathway.


Sign in / Sign up

Export Citation Format

Share Document