NeuroProtective effects of adenosine receptor agonist coadministration with ascorbic acid on CA1 hippocampus in a mouse model of ischemia reperfusion injury

2013 ◽  
Vol 28 (3) ◽  
pp. 367-374 ◽  
Author(s):  
M. Zamani ◽  
M. Soleimani ◽  
F. Golab ◽  
F. Mohamadzadeh ◽  
M. Mehdizadeh ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuai Yang ◽  
Bin Hu ◽  
Zongming Wang ◽  
Changming Zhang ◽  
Haosen Jiao ◽  
...  

Abstract Activation of the cannabinoid CB1 receptor induces neuroprotection against brain ischemia/reperfusion injury (IRI); however, the mechanism is still unknown. In this study, we used oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neuronal cells and middle cerebral artery occlusion (MCAO)-induced brain IRI in rats to mimic ischemic brain injury, and hypothesized that the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) would protect ischemic neurons by inhibiting mitochondrial fission via dynamin-related protein 1 (Drp1). We found that OGD/R injury reduced cell viability and mitochondrial function, increased lactate dehydrogenase (LDH) release, and increased cell apoptosis, and mitochondrial fission. Notably, ACEA significantly abolished the OGD/R-induced neuronal injuries described above. Similarly, ACEA significantly reversed MCAO-induced increases in brain infarct volume, neuronal apoptosis and mitochondrial fission, leading to the recovery of neurological functions. The neuroprotective effects of ACEA were obviously blocked by coadministration of the CB1 receptor antagonist AM251 or by the upregulation of Drp1 expression, indicating that ACEA alleviates brain IRI via the CB1–Drp1 pathway. Our findings suggest that the CB1 receptor links aberrant mitochondrial fission to brain IRI, providing a new therapeutic target for brain IRI treatment.


1994 ◽  
Vol 14 (1) ◽  
pp. 166-173 ◽  
Author(s):  
Jie-Gang Zhou ◽  
Joseph R. Meno ◽  
Sean S.-F. Hsu ◽  
H. Richard Winn

The present study was designed to determine the effects of theophylline, an adenosine receptor antagonist, and cyclohexyladenosine (CHA), an adenosine receptor agonist, on ischemic brain injury following normo- and hyperglycemic ischemia and reperfusion in fasted male Wistar rats. Moderate hyperglycemia was achieved by administering 17% D-glucose (3 g/kg i.p.), whereas normoglycemic animals received an equal volume of saline. The animals were further divided into two groups: One group was pretreated with either theophylline (0.20 μmol/g i.p.) or an equal volume of saline; the second group received either intraventricular CHA (6.25 nmol) or mock CSF prior to the onset of ischemia. During ischemia, pericranial temperature was maintained at 36°C and EEG was monitored. Cerebral ischemia was induced for 15 min, after which flow was restored and the animals were allowed to recover completely. There were no significant differences in physiologic parameters among the groups studied. Five days following the ischemic episode, the rats were perfused with formalin and the brains sub-serially sectioned (8 μm) in the coronal plane and stained with celestine blue/acid fuchsin. Histopathologic analysis was performed in a blinded fashion to determine percentage of dead neurons. Hyperglycemic animals had significantly greater ischemic injury in CA1, cortex, and caudate than the normoglycemic group (p < 0.01). Moreover, rats pretreated with theophylline had a significantly (p < 0.01) higher percentage of dead neurons in CA1, cortex, and caudate than corresponding controls. On the other hand, rats treated with CHA exhibited significantly (p < 0.01) less cerebral ischemic injury than corresponding controls, in either normo- or hyperglycemic conditions. These data confirm previous studies showing the deleterious effects of hyperglycemia on cerebral ischemia-reperfusion injury. Moreover, our results illustrate a protective effect of adenosine on both normo- and hyperglycemic ischemia-reperfusion injury and thus support the hypothesis that attenuated cerebral ischemic production of adenosine contributes to increased tissue injury observed under hyperglycemic conditions.


2021 ◽  
Vol 12 (1) ◽  
pp. 210-217
Author(s):  
Yibiao Wang ◽  
Min Xu

Abstract Background This study aimed to explore the role of miR-380-5p in cerebral ischemia/reperfusion (CIR) injury-induced neuronal cell death and the potential signaling pathway involved. Methodology Human neuroblastoma cell line SH-SY5Y cells were used in this study. Oxygen and glucose deprivation/reperfusion (OGD/R) model was used to mimic ischemia/reperfusion injury. CCK-8 assay and flow cytometry were used to examine cell survival. Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to measure the change of RNA and protein expression, respectively. TargetScan and Luciferase assay was used to confirm the target of miR-380-5p. Malondialdehyde (MDA) superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) were measured using commercial kits. Results miR-380-5p was downregulated in SH-SY5Y cells after OGD/R. Cell viability was increased by miR-380-5p, while cell apoptosis was reduced by miR-380-5p mimics. MDA was reduced by miR-380-5p mimics, while SOD and GSHPx were increased by miR-380-5p. Results of TargetScan and luciferase assay have showed that BACH1 is the direct target of miR-380-5p. Expression of NRF2 was upregulated after OGD/R, but was not affected by miR-380-5p. mRNA expression of HO-1 and NQO1 and ARE activity were increased by miR-380-5p. Overexpression of BACH1 reversed the antioxidant and neuroprotective effects of miR-380-5p. Conclusion miR-380-5p inhibited cell death induced by CIR injury through target BACH1 which also facilitated the activation of NRF2, indicating the antioxidant and neuroprotective effects of miR-380-5p.


Molecules ◽  
2015 ◽  
Vol 20 (8) ◽  
pp. 14487-14503 ◽  
Author(s):  
Denis Silachev ◽  
Egor Plotnikov ◽  
Ljubava Zorova ◽  
Irina Pevzner ◽  
Natalia Sumbatyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document