Theoretical principles and energy parameters in ferrosilicon production with an increase in the electrode spacing and the distance from the electrodes to the bath

Metallurgist ◽  
2009 ◽  
Vol 53 (5-6) ◽  
pp. 373-379 ◽  
Author(s):  
A. P. Shkirmontov
2020 ◽  
Vol 56 (6) ◽  
pp. 655-669
Author(s):  
A. A. Vasil’ev ◽  
V. A. Vasil’ev

1986 ◽  
Vol 51 (4) ◽  
pp. 731-737
Author(s):  
Viliam Klimo ◽  
Jozef Tiňo

Geometry and energy parameters of the individual dissociation intermediate steps of CH4 molecule, parameters of the barrier to linearity and singlet-triplet separation of the CH2 molecule have been calculated by means of the UMP method in the minimum basis set augmented with the bond functions. The results agree well with experimental data except for the geometry of CH2(1A1) and relatively high energy values of CH(2II) and CH2(1A1) where the existence of two UHF solutions indicates a necessity of description of the electronic correlation by more exact methods of quantum chemistry.


2018 ◽  
Vol 481 (1) ◽  
pp. 877-878
Author(s):  
F. A. Letnikov ◽  
B. S. Danilov ◽  
A. F. Letnikova

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 792
Author(s):  
Oleksandr Drozd ◽  
Grzegorz Nowakowski ◽  
Anatoliy Sachenko ◽  
Viktor Antoniuk ◽  
Volodymyr Kochan ◽  
...  

This paper presents a power-oriented monitoring of clock signals that is designed to avoid synchronization failure in computer systems such as FPGAs. The proposed design reduces power consumption and increases the power-oriented checkability in FPGA systems. These advantages are due to improvements in the evaluation and measurement of corresponding energy parameters. Energy parameter orientation has proved to be a good solution for detecting a synchronization failure that blocks logic monitoring circuits. Key advantages lay in the possibility to detect a synchronization failure hidden in safety-related systems by using traditional online testing that is based on logical checkability. Two main types of power-oriented monitoring are considered: detecting a synchronization failure based on the consumption and the dissipation of power, which uses temperature and current consumption sensors, respectively. The experiments are performed on real FPGA systems with the controlled synchronization disconnection and the use of the computer-aided design (CAD) utility to estimate the decreasing values of the energy parameters. The results demonstrate the limited checkability of FPGA systems when using the thermal monitoring of clock signals and success in monitoring by the consumption current.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4622
Author(s):  
Kevin Paolo V. Robles ◽  
Jurng-Jae Yee ◽  
Seong-Hoon Kee

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements


Sign in / Sign up

Export Citation Format

Share Document