In vitro antimicrobial evaluation and in silico studies of coumarin derivatives tagged with pyrano-pyridine and pyrano-pyrimidine moieties as DNA gyrase inhibitors

Author(s):  
Eman A. Fayed ◽  
Eman S. Nosseir ◽  
Ahmed Atef ◽  
Samar A. El‑Kalyoubi
2019 ◽  
Vol 31 (10) ◽  
pp. 2157-2164
Author(s):  
B. Prithivirajan ◽  
M. Jebastin Sonia Jas ◽  
G. Marimuthu

(Z)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(4-(difluoromethoxy)-3-hydroxyphenyl)prop-2-en-1-one hydrazone derivatives pronounced in this manuscript represents a new collection of antibacterial agents in addition to the DNA gyrase inhibitors. Efforts had been made to synthesize those chalcone-hydrazone derivatives (4a-e) in good yields. The literature survey confirms that nano-ZnO as heterogeneous catalyst has obtained big interest because of its ecofriendly nature and has been explored as a effective catalyst for several organic ameliorations. Subsequently, induced by way of these observations and in continuation to our interest in organic synthesis with using nanocatalyst. in vitro Antibacterial activity has been evaluated towards Gram-positive and Gram-negative bacterial strains for all compounds. So one can discover the affinity to bacterial proteins docking have a look at have been carried out for 5 synthesized derivatives, antibiotic drug and co-crystallized ligands with special mechanism of action DNA gyrase B and methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) the usage of AutoDock 4.


2021 ◽  
Vol 14 (8) ◽  
pp. 789
Author(s):  
Tihomir Tomašič ◽  
Asta Zubrienė ◽  
Žiga Skok ◽  
Riccardo Martini ◽  
Stane Pajk ◽  
...  

(1) Background: DNA gyrase is an important target for the development of novel antibiotics. Although ATP-competitive DNA gyrase (GyrB) inhibitors are a well-studied class of antibacterial agents, there is currently no representative used in therapy, largely due to unwanted off-target activities. Selectivity of GyrB inhibitors against closely related human ATP-binding enzymes should be evaluated early in development to avoid off-target binding to homologous binding domains. (2) Methods: To address this challenge, we developed selective 3D-pharmacophore models for GyrB, human topoisomerase IIα (TopoII), and the Hsp90 N-terminal domain (NTD) to be used in in silico activity profiling paradigms to identify molecules selective for GyrB over TopoII and Hsp90, as starting points for hit expansion and lead optimization. (3) Results: The models were used to profile highly active GyrB, TopoII, and Hsp90 inhibitors. Selected compounds were tested in in vitro assays. GyrB inhibitors 1 and 2 were inactive against TopoII and Hsp90, while 3 and 4, potent Hsp90 inhibitors, displayed no inhibition of GyrB and TopoII, and TopoII inhibitors 5 and 6 were inactive at GyrB and Hsp90. (4) Conclusions: The results provide a proof of concept for the use of target activity profiling methods to identify selective starting points for hit and lead identification.


Author(s):  
Dimitrios Ι. Avgoulas ◽  
Georgios Katsipis ◽  
Eleftherios Halevas ◽  
Elena G. Geromichalou ◽  
George D. Geromichalos ◽  
...  

Author(s):  
Badampudi Santosh Kumar ◽  
Gudhi Madhu ◽  
Lk Ravindranath

3,4-Disubstituted pyrrolidinesulfonamides were synthesized and screened for their antimicrobial activity. Title compounds were established as potent antibacterial and antifungal agents. Noteworthy antimicrobial activity was found for the title compounds against the tested microorganisms. They exhibit comparable results with standard drugs. Besides the in vitro antimicrobial activity, the synthesized compounds were evaluated for their in silico inhibitory activity on active site of β-glucosidase enzyme. In silico studies were done by GOLD docking method against β-glucosidase 3VKK (PDB Id). In silico studies were conducted to evaluate the ability of synthesized compounds to inhibit the β-glucosidase enzyme. The results revealed that 3,4-disubstitutedpyrrolidinesulfonamides are the potent β-glucosidase inhibitors by binding at the active site. A sensible inhibition against β-glucosidases was observed for the compound with 13,4-oxadizole ring has higher β-glucosidase inhibition activity than the other compounds. The free energy of binding and inhibition constant (Ki) of the docked compounds were evaluated and presented.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 19 (8) ◽  
pp. 633-644 ◽  
Author(s):  
Komal Kalani ◽  
Sarfaraz Alam ◽  
Vinita Chaturvedi ◽  
Shyam Singh ◽  
Feroz Khan ◽  
...  

Introduction: As a part of our drug discovery program for anti-tubercular agents, dihydroartemisinin (DHA-1) was screened against Mtb H37Rv, which showed moderate anti-tubercular activity (>25.0 µg/mL). These results prompted us to carry out the chemical transformation of DHA-1 into various derivatives and study their antitubercular potential. Materials and Methods: DHA-1 was semi-synthetically converted into four new acyl derivatives (DHA-1A – DHA-1D) and in-vitro evaluated for their anti-tubercular potential against Mycobacterium tuberculosis H37Rv virulent strain. The derivatives, DHA-1C (12-O-(4-nitro) benzoyl; MIC 12.5 µg/mL) and DHA-1D (12-O-chloro acetyl; MIC 3.12µg/mL) showed significant activity against the pathogen. Results: In silico studies of the most active derivative (DHA-1D) showed interaction with ARG448 inhibiting the mycobacterium enzymes. Additionally, it showed no cytotoxicity towards the Vero C1008 cells and Mouse bone marrow derived macrophages. Conclusion: DHA-1D killed 62% intracellular M. tuberculosis in Mouse bone marrow macrophage infection model. To the best of our knowledge, this is the first-ever report on the antitubercular potential of dihydroartemisinin and its derivatives. Since dihydroartemisinin is widely used as an antimalarial drug; these results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non-toxic natural product.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document