scholarly journals Leaf-, panel- and latex-expressed sequenced tags from the rubber tree (Hevea brasiliensis) under cold-stressed and suboptimal growing conditions: the development of gene-targeted functional markers for stress response

2014 ◽  
Vol 34 (3) ◽  
pp. 1035-1053 ◽  
Author(s):  
Carla C. Silva ◽  
Camila C. Mantello ◽  
Tatiana Campos ◽  
Livia M. Souza ◽  
Paulo S. Gonçalves ◽  
...  
2021 ◽  
Vol 22 (23) ◽  
pp. 12707
Author(s):  
Xue Wang ◽  
Wen-Cheng Liu ◽  
Xue-Wei Zeng ◽  
Sa Yan ◽  
Yi-Min Qiu ◽  
...  

Low temperature remarkably limits rubber tree (Hevea brasiliensis Muell. Arg.) growth, latex production, and geographical distribution, but the underlying mechanisms of Hevea brasiliensis cold stress response remain elusive. Here, we identified HbSnRK2.6 as a key component in ABA signaling functions in phytohormone abscisic acid (ABA)-regulated cold stress response in Hevea brasiliensis. Exogenous application of ABA enhances Hevea brasiliensis cold tolerance. Cold-regulated (COR) genes in the CBF pathway are upregulated by ABA. Transcript levels of all five HbSnRK2.6 members are significantly induced by cold, while HbSnRK2.6A, HbSnRK2.6B, and HbSnRK2.6C can be further activated by ABA under cold conditions. Additionally, HbSnRK2.6s are localized in the cytoplasm and nucleus, and can physically interact with HbICE2, a crucial positive regulator in the cold signaling pathway. Overexpression of HbSnRK2.6A or HbSnRK2.6B in Arabidopsis extensively enhances plant responses to ABA and expression of COR genes, leading to increased cold stress tolerance. Furthermore, HbSnRK2.6A and HbSnRK2.6B can promote transcriptional activity of HbICE2, thus, increasing the expression of HbCBF1. Taken together, we demonstrate that HbSnRK2.6s are involved in ABA-regulated cold stress response in Hevea brasiliensis by regulating transcriptional activity of HbICE2.


2018 ◽  
Vol 40 (11) ◽  
pp. 1181-1197 ◽  
Author(s):  
Xiao-Xiao Gong ◽  
Bing-Yu Yan ◽  
Jin Hu ◽  
Cui-Ping Yang ◽  
Yi-Jian Li ◽  
...  

1991 ◽  
Vol 266 (24) ◽  
pp. 15944-15948
Author(s):  
H.I. Lee ◽  
W.F. Broekaert ◽  
N.V. Raikhel ◽  
H. Lee

2018 ◽  
Vol 12 (1) ◽  
pp. 99-107
Author(s):  
Débora Domiciano ◽  
◽  
Pollyanna Aparecida Carvalho ◽  
Luiz Edson Mota de Oliveira ◽  
Hilda Beatriz W. Cárdenaz ◽  
...  

2002 ◽  
Vol 269 (3) ◽  
pp. 893-901 ◽  
Author(s):  
Evert Bokma ◽  
Henriëtte J. Rozeboom ◽  
Mark Sibbald ◽  
Bauke W. Dijkstra ◽  
Jaap J. Beintema

2016 ◽  
Vol 40 (6) ◽  
pp. 1099-1107
Author(s):  
Letícia Maria Alves Ramos ◽  
João Vicente de Figueiredo Latorraca ◽  
Thayanne Caroline Castor Neto ◽  
Letícia Souza Martins ◽  
Elias Taylor Durgante Severo

ABSTRACT Tension wood is an important anatomical structure for its participation in the orientation of the trunk and the architecture of the branches as a function of structural reinforcement. However, its presence in large amounts significantly affects the technological properties of wood, just as in the rubber tree. Nevertheless, there is still demand for information about the origin, distribution and structural features in this species. Thus, this study aims to characterize the cellular structures in tension and opposite wood in Hevea brasiliensis (rubber tree), as well as its radial and longitudinal distribution. Discs at the base and the middle of the commercial logs were collected from three trees in a commercial plantation located in Tabapoã - SP. Tangential diameter of vessels, fiber length (gelatinous and non-gelatinous fibers), microfibril angle and proportionality of cellular elements (vessels, axial parenchyma, ray, gelatinous fibers and non-gelatinous fibers) were measured, and influence of gelatinous fiber presence in vessel diameter was observed. Gelatinous fibers were observed in the two types of wood and in the two trunk heights. Both types of wood were distinguished by gelatinous fiber length and the proportion of axial parenchyma. The tension wood in mid-trunk was the most different, with long gelatinous fibers and less abundant, larger vessel diameter and vessel proportion. Moreover, smaller vessel diameter was observed in the regions with a high proportion of gelatinous fibers, suggesting that the plant invests more support than in liquid transport.


2020 ◽  
Vol 8 (2) ◽  
pp. 38-44
Author(s):  
Nguyen Van Minh ◽  
Mai Huu Phuc ◽  
Duong Nhat Linh ◽  
Tran Thi A Ni ◽  
Tran Kien Duc ◽  
...  

28 leaves and living-tissue samples of rubber tree (Hevea brasiliensis) were collected from Ho Chi Minh City, Binh Phuoc province and Binh Duong province (Viet Nam). We isolated and screened endophytes that have potential application as agents for biocontrol of Corticium salmonicolor, the agent of Pink Disease in rubber trees. As a result, 21 strains of endophytic bacteria and 14 strains of endophytic fungi were isolated. Antagonistic activity of the endophytes towards C. salmonicolor was checked by using a dual culture. Testing results showed that: T9, T15 and T16 strains have inhibited C. salmonicolor. T9 and T16 strains showed result that 100% of inhibiting C. salmonicolor at the concentration of 1:1. In the test of ability to kill C. salmonicolor, T9 and T16 strains showed that they could kill C. salmonicolor after 3 sprays of bacterial filtrate. T9 and T6 strains, which were identified by biochemical methods, have similar characteristics to Bacillus thuringiensis.


Sign in / Sign up

Export Citation Format

Share Document