Troglitazone-activated PPARγ inhibits LPS-induced lung alveolar type II epithelial cells injuries via TNF-α

2010 ◽  
Vol 38 (8) ◽  
pp. 5009-5015 ◽  
Author(s):  
Bo Xiao ◽  
Jing Xu ◽  
Guansong Wang ◽  
Peng Jiang ◽  
Fang Fang ◽  
...  
2018 ◽  
Vol 101 ◽  
pp. 585-596 ◽  
Author(s):  
Chunguang Yan ◽  
Chunmin Deng ◽  
Xiufang Liu ◽  
Yutong Chen ◽  
Jiawei Ye ◽  
...  

1999 ◽  
Vol 276 (3) ◽  
pp. L481-L490 ◽  
Author(s):  
Rama K. Mallampalli ◽  
Erik J. Peterson ◽  
Aaron Brent Carter ◽  
Ronald G. Salome ◽  
Satya N. Mathur ◽  
...  

Ceramide is a bioactive lipid mediator that has been observed to induce apoptosis in vitro. The purpose of this study was to determine whether endogenous ceramide, generated in response to in vivo administration of tumor necrosis factor-α (TNF-α), increases apoptosis in primary rat alveolar type II epithelial cells. Intratracheal instillation of TNF-α (5 μg) produced a decrease in sphingomyelin and activation of a neutral sphingomyelinase. These changes were associated with a significant increase in lung ceramide content. TNF-α concomitantly activated the p42/44 extracellular signal-related kinases and induced nuclear factor-κB activation in the lung. Hypodiploid nuclei studies revealed that intratracheal TNF-α did not increase type II cell apoptosis compared with that in control cells after isolation. A novel observation from separate in vitro studies demonstrated that type II cells undergo a gradual increase in apoptosis after time in culture, a process that was accelerated by exposure of cells to ultraviolet light. However, culture of cells with a cell-permeable ceramide, TNF-α, or a related ligand, anti-CD95, did not increase apoptosis above the control level. The results suggest that ceramide resulting from TNF-α activation of sphingomyelin hydrolysis might activate the mitogen-activated protein kinase and nuclear factor-κB pathways without increasing programmed cell death in type II cells.


1998 ◽  
Vol 275 (6) ◽  
pp. L1110-L1119 ◽  
Author(s):  
Edward G. Barrett ◽  
Carl Johnston ◽  
Günter Oberdörster ◽  
Jacob N. Finkelstein

Recent evidence has suggested that epithelial cells may contribute to the inflammatory response in the lung after exposure to crystalline silica through the production of and response to specific growth factors, chemokines, and cytokines. However, the exact cellular and molecular responses of epithelial cells to silica exposure remains unclear. Using a murine alveolar type II cell line [murine lung epithelial (MLE)-15 cell line], we measured the early changes in various cytokine and chemokine mRNA species after exposure of the cells to 4–35 μg/cm2 of silica (cristobalite), interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) alone or in combination. Total mRNA was isolated and assayed with an RNase protection assay after 6 and 24 h of exposure. Cristobalite exposure alone led to an increase in monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-2, and regulated on activation normal T cells expressed and secreted (RANTES) mRNAs. Treatment with IFN-γ alone increased MCP-1 mRNA levels. Treatment with TNF-α or LPS alone led to an increase in MCP-1 and MIP-2 mRNA. The combination of cristobalite plus TNF-α led to an additive increase in MCP-1 and MIP-2, whereas cristobalite plus IFN-γ or LPS had a synergistic effect. We also found with a TNF-α-neutralizing antibody that TNF-α plays a major role in mediating the type II cell chemokine response to cristobalite exposure. The results indicate that the cristobalite-induced chemokine response in the lung epithelium is mediated in part by TNF-α and can be enhanced by macrophage- and lymphocyte-derived inflammatory mediators in an additive and synergistic fashion.


1999 ◽  
Vol 276 (6) ◽  
pp. L979-L988 ◽  
Author(s):  
Edward G. Barrett ◽  
Carl Johnston ◽  
Günter Oberdörster ◽  
Jacob N. Finkelstein

We have shown previously that epithelial cells may contribute to the inflammatory response in the lung after exposure to crystalline silica through the production of and response to specific chemokines and cytokines. However, the exact cellular and molecular responses of epithelial cells to silica exposure remain unclear. We hypothesize that non-oxidant-mediated silica-cell interactions lead to the upregulation of tumor necrosis factor-α (TNF-α), whereby TNF-α-induced generation of reactive oxygen species (ROS) leads to the activation of the monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-2 genes. Using a murine alveolar type II cell line, murine lung epithelial (MLE)-15, we measured the early changes in TNF-α, MCP-1, and MIP-2 mRNA species after exposure of the cells to 18 μg/cm2 silica (cristobalite) in combination with various antioxidants. Total mRNA was isolated and assayed using an RNase protection assay after 6 h of particle exposure. We found that extracellular GSH could completely attenuate the cristobalite-induced expression of MCP-1 and MIP-2 mRNAs, whereas TNF-α mRNA levels were unaltered. We also found using the oxidant-sensitive dye 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate di(acetoxymethyl ester) that treatment of MLE-15 cells with cristobalite and TNF-α (1 ng/ml) resulted in ROS production. This ROS production could be inhibited with extracellular GSH treatment, and in the case of cristobalite-induced ROS, inhibition was also achieved with an anti-TNF-α antibody. The results support the hypothesis that TNF-α mediates cristobalite-induced MCP-1 and MIP-2 expression through the generation of ROS.


2007 ◽  
Vol 293 (1) ◽  
pp. L105-L113 ◽  
Author(s):  
Ashish K. Sharma ◽  
Lucas G. Fernandez ◽  
Alaa S. Awad ◽  
Irving L. Kron ◽  
Victor E. Laubach

Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-α and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-α further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-α) by MLE-12 cells, whereas H/R induced TNF-α, MCP-1, RANTES, MIP-1α, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-α by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-α, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.


2001 ◽  
Vol 280 (2) ◽  
pp. L191-L202 ◽  
Author(s):  
Yihe Guo ◽  
Cara Martinez-Williams ◽  
Clare E. Yellowley ◽  
Henry J. Donahue ◽  
D. Eugene Rannels

Extracellular matrix (ECM) proteins promote attachment, spreading, and differentiation of cultured alveolar type II epithelial cells. The present studies address the hypothesis that the ECM also regulates expression and function of gap junction proteins, connexins, in this cell population. Expression of cellular fibronectin and connexin (Cx) 43 increase in parallel during early type II cell culture as Cx26 expression declines. Gap junction intercellular communication is established over the same interval. Cells plated on a preformed, type II cell-derived, fibronectin-rich ECM demonstrate accelerated formation of gap junction plaques and elevated gap junction intercellular communication. These effects are blocked by antibodies against fibronectin, which cause redistribution of Cx43 protein from the plasma membrane to the cytoplasm. Conversely, cells cultured on a laminin-rich ECM, Matrigel, express low levels of Cx43 but high levels of Cx26, reflecting both transcriptional and translational regulation. Cx26 and Cx43 thus demonstrate reciprocal regulation by ECM constituents.


2010 ◽  
Vol 26 (6) ◽  
pp. 367-374 ◽  
Author(s):  
Tiffany M Robb ◽  
Michael J Rogers ◽  
Suann S Woodward ◽  
Simon S Wong ◽  
Mark L Witten

2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document