Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach

Author(s):  
Shweta Gupta ◽  
Adarsh Kumar ◽  
Rupali Patel ◽  
Vinay Kumar
ACS Sensors ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 684-691 ◽  
Author(s):  
Mingming Zhang ◽  
Guanghui Li ◽  
Qing Zhou ◽  
Deng Pan ◽  
Min Zhu ◽  
...  

2020 ◽  
Vol 145 ◽  
pp. 01013
Author(s):  
Zhao Yu-jia ◽  
Fan Pei-lei ◽  
Liang Liang ◽  
Liu Yin-yin ◽  
Zhao Hai-bo ◽  
...  

Genetically modified crops (GMCs) have been known for the excellent qualities. The commercializing of GMCs has taken great economic and social benefits. However, the bio-security of GMCs was still an issue. To solve this problem, countries around the world were constantly strengthening regulations on planting, processing and detecting of GMCs. This paper reviewed the development of commercialization and detection of GMCs. The difference between protein and nucleic acid detection methods of genetically modified crop was further discussed. This paper will provide new insights for the application of genetically modified crops.


GM Crops ◽  
2010 ◽  
Vol 1 (2) ◽  
pp. 11-22 ◽  
Author(s):  
Saikat Kumar Basu ◽  
Madhuleema Dutta ◽  
Aakash Goyal ◽  
Pankaj Kumar Bhowmik ◽  
Jitendra Kumar ◽  
...  

Biomeditsina ◽  
2019 ◽  
pp. 12-33
Author(s):  
E. M. Koloskova ◽  
V. N. Karkischenko ◽  
V. A. Yezersky ◽  
N. V. Petrova ◽  
S. V. Maksimenko ◽  
...  

With the advent of endonuclease methods of genome editing, particularly CRISPR/Cas9, it has become possible to obtain genetically modified rabbits by microinjection of zygotes. These highly effective human disease models can be used for various purposes. The present review aims to consider modern achievements in the creation of rabbit biomodels of human diseases using the technologies of genetic editing. It is concluded that Russian laboratories should intensify research in the development of genetically modified rabbits that can be used for various biomedical studies and biomodelling.


2015 ◽  
Vol 27 (1) ◽  
pp. 108
Author(s):  
H. Matsunari ◽  
M. Watanabe ◽  
K. Nakano ◽  
A. Uchikura ◽  
Y. Asano ◽  
...  

Genome editing technologies have been used as a powerful strategy for the generation of genetically modified pigs. We previously developed genetically modified clone pigs with organogenesis-disabled phenotypes, as well as pigs exhibiting diseases with similar features to those of humans. Here, we report the production efficiency of various gene knockout cloned pigs from somatic cells that were genetically modified using zinc finger nucleases (ZFN) or transcription activator-like effector nucleases (TALEN). The ZFN- or TALEN-encoding mRNAs, which targeted 7 autosomal or X-linked genes, were introduced into porcine fetal fibroblast cells using electroporation. Clonal cell populations carrying induced mutations were selected after limiting dilution. The targeted portion of the genes was amplified using PCR, followed by sequencing and mutation analysis. Among the collected knockout cell colonies, cells showing good proliferation and morphology were selected and used for somatic cell nuclear transfer (SCNT). In vitro-matured oocytes were obtained from porcine cumulus-oocyte complexes cultured in NCSU23-based medium and were used to obtain recipient oocytes for SCNT after enucleation. SCNT was performed as reported previously (Matsunari et al. 2008). The cloned embryos were cultured for 7 days in porcine zygote medium (PZM)-5 to assess their developmental ability. Cloned embryos were transplanted into the oviduct or uterus of oestrus-synchronized recipient gilts to evaluate their competence to develop to fetuses or piglets. Cloned embryos reconstructed with 7 types of knockout cells showed equal development to blastocysts compared with those derived from the wild-type cells (54.5–83.3% v. 60.7%). Our data (Table 1) demonstrated that the reconstructed embryos derived from knockout cells could efficiently give rise to cloned offspring regardless of the type of genome editing methodology (i.e. ZFN or TALEN). Table 1.Production efficiency of gene knockout cloned pigs using genome editing This study was supported by JST, ERATO, the Nakauchi Stem Cell and Organ Regeneration Project, JST, CREST, Meiji University International Institute for Bio-Resource Research (MUIIBR), and JSPS KAKENHI Grant Number 26870630.


Sign in / Sign up

Export Citation Format

Share Document