Intelligent Channel Parameter Estimation System Based on Neural Network Regression Model

2020 ◽  
Vol 25 (6) ◽  
pp. 2291-2301
Author(s):  
Lantu Guo ◽  
Yanan Liu ◽  
Wenxin Li
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


2021 ◽  
Vol 11 (14) ◽  
pp. 6594
Author(s):  
Yu-Chia Hsu

The interdisciplinary nature of sports and the presence of various systemic and non-systemic factors introduce challenges in predicting sports match outcomes using a single disciplinary approach. In contrast to previous studies that use sports performance metrics and statistical models, this study is the first to apply a deep learning approach in financial time series modeling to predict sports match outcomes. The proposed approach has two main components: a convolutional neural network (CNN) classifier for implicit pattern recognition and a logistic regression model for match outcome judgment. First, the raw data used in the prediction are derived from the betting market odds and actual scores of each game, which are transformed into sports candlesticks. Second, CNN is used to classify the candlesticks time series on a graphical basis. To this end, the original 1D time series are encoded into 2D matrix images using Gramian angular field and are then fed into the CNN classifier. In this way, the winning probability of each matchup team can be derived based on historically implied behavioral patterns. Third, to further consider the differences between strong and weak teams, the CNN classifier adjusts the probability of winning the match by using the logistic regression model and then makes a final judgment regarding the match outcome. We empirically test this approach using 18,944 National Football League game data spanning 32 years and find that using the individual historical data of each team in the CNN classifier for pattern recognition is better than using the data of all teams. The CNN in conjunction with the logistic regression judgment model outperforms the CNN in conjunction with SVM, Naïve Bayes, Adaboost, J48, and random forest, and its accuracy surpasses that of betting market prediction.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 664
Author(s):  
Yun Xue ◽  
Lei Zhu ◽  
Bin Zou ◽  
Yi-min Wen ◽  
Yue-hong Long ◽  
...  

For Case-II water bodies with relatively complex water qualities, it is challenging to establish a chlorophyll-a concentration (Chl-a concentration) inversion model with strong applicability and high accuracy. Convolutional Neural Network (CNN) shows excellent performance in image target recognition and natural language processing. However, there little research exists on the inversion of Chl-a concentration in water using convolutional neural networks. Taking China’s Dongting Lake as an example, 90 water samples and their spectra were collected in this study. Using eight combinations as independent variables and Chl-a concentration as the dependent variable, a CNN model was constructed to invert Chl-a concentration. The results showed that: (1) The CNN model of the original spectrum has a worse inversion effect than the CNN model of the preprocessed spectrum. The determination coefficient (RP2) of the predicted sample is increased from 0.79 to 0.88, and the root mean square error (RMSEP) of the predicted sample is reduced from 0.61 to 0.49, indicating that preprocessing can significantly improve the inversion effect of the model.; (2) among the combined models, the CNN model with Baseline1_SC (strong correlation factor of 500–750 nm baseline) has the best effect, with RP2 reaching 0.90 and RMSEP only 0.45. The average inversion effect of the eight CNN models is better. The average RP2 reaches 0.86 and the RMSEP is only 0.52, indicating the feasibility of applying CNN to Chl-a concentration inversion modeling; (3) the performance of the CNN model (Baseline1_SC (RP2 = 0.90, RMSEP = 0.45)) was far better than the traditional model of the same combination, i.e., the linear regression model (RP2 = 0.61, RMSEP = 0.72) and partial least squares regression model (Baseline1_SC (RP2 = 0.58. RMSEP = 0.95)), indicating the superiority of the convolutional neural network inversion modeling of water body Chl-a concentration.


Author(s):  
Fazal-E- Asim ◽  
Felix Antreich ◽  
Charles C. Cavalcante ◽  
Andre L. F. De Almeida ◽  
Josef A. Nossek

2010 ◽  
Vol 33 ◽  
pp. 74-78
Author(s):  
B. Zhao

In this work, the artificial neural network model and statistical regression model are established and utilized for predicting the fiber diameter of spunbonding nonwovens from the process parameters. The artificial neural network model has good approximation capability and fast convergence rate, which is used in this research. The results show the artificial neural network model can provide quantitative predictions of fiber diameter and yield more accurate and stable predictions than the statistical regression model, which reveals that the artificial neural network model is based on the inherent principles, and it can yield reasonably good prediction results and provide insight into the relationship between process parameters and fiber diameter.


2010 ◽  
Vol 36 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Abhishek Pandey ◽  
J. K. Srivastava ◽  
N. S. Rajput ◽  
R. Prasad

Sign in / Sign up

Export Citation Format

Share Document