Real-time pedestrian crossing lights detection algorithm for the visually impaired

2017 ◽  
Vol 77 (16) ◽  
pp. 20651-20671 ◽  
Author(s):  
Ruiqi Cheng ◽  
Kaiwei Wang ◽  
Kailun Yang ◽  
Ningbo Long ◽  
Jian Bai ◽  
...  
Author(s):  
Raghad Raied Mahmood Et al.

It is relatively simple for a normal human to interpret and understand every banknote, but one of the major problems for visually impaired people are money recognition, especially for paper currency. Since money plays such an important role in our everyday lives and is required for every business transaction, real-time detection and recognition of banknotes become a necessity for blind or visually impaired people For that purpose, we propose a real-time object detection system to help visually impaired people in their daily business transactions. Dataset Images of the Iraqi banknote category are collected in different conditions initially and then, these images are augmented with different geometric transformations, to make the system strong. These augmented images are then annotated manually using the "LabelImg" program, from which training sets and validation image sets are prepared. We will use YOLOv3 real-time Object Detection algorithm trained on custom Iraqi banknote dataset for detection and recognition of banknotes. Then the label of the banknotes is identified and then converted into audio by using Google Text to Speech (gTTS), which will be the expected output. The performance of the trained model is evaluated on a test dataset and real-time live video. The test results demonstrate that the proposed method can detect and recognize Iraqi paper money with high mAP reaches 97.405% and a short time.


Author(s):  
Kiruthiga N ◽  
Divya E ◽  
Haripriya R ◽  
Haripriya V.

Navigation in indoor environments is highly challenging for visually impaired person, particularly in spaces visited for the first time. Various solutions have been proposed to deal with this challenge. In this project consider as the real time object Recognition and classification using deep learning algorithms. Object detection mainly deals with identification of real time objects such as people, animals, and objects. Object detection algorithm uses a wide range of image processing applications for extracting the object's desired portion. This enables one to identify the objects and calculate the accuracy of the object and deliver through voice. Using this information, the system determines the user's trajectory and can locate possible obstacles in that route.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
João Gaspar Ramôa ◽  
Vasco Lopes ◽  
Luís A. Alexandre ◽  
S. Mogo

AbstractIn this paper, we propose three methods for door state classification with the goal to improve robot navigation in indoor spaces. These methods were also developed to be used in other areas and applications since they are not limited to door detection as other related works are. Our methods work offline, in low-powered computers as the Jetson Nano, in real-time with the ability to differentiate between open, closed and semi-open doors. We use the 3D object classification, PointNet, real-time semantic segmentation algorithms such as, FastFCN, FC-HarDNet, SegNet and BiSeNet, the object detection algorithm, DetectNet and 2D object classification networks, AlexNet and GoogleNet. We built a 3D and RGB door dataset with images from several indoor environments using a 3D Realsense camera D435. This dataset is freely available online. All methods are analysed taking into account their accuracy and the speed of the algorithm in a low powered computer. We conclude that it is possible to have a door classification algorithm running in real-time on a low-power device.


2020 ◽  
Vol 32 ◽  
pp. 03054
Author(s):  
Akshata Parab ◽  
Rashmi Nagare ◽  
Omkar Kolambekar ◽  
Parag Patil

Vision is one of the very essential human senses and it plays a major role in human perception about surrounding environment. But for people with visual impairment their definition of vision is different. Visually impaired people are often unaware of dangers in front of them, even in familiar environment. This study proposes a real time guiding system for visually impaired people for solving their navigation problem and to travel without any difficulty. This system will help the visually impaired people by detecting the objects and giving necessary information about that object. This information may include what the object is, its location, its precision, distance from the visually impaired etc. All these information will be conveyed to the person through audio commands so that they can navigate freely anywhere anytime with no or minimal assistance. Object detection is done using You Only Look Once (YOLO) algorithm. As the process of capturing the video/images and sending it to the main module has to be carried at greater speed, Graphics Processing Unit (GPU) is used. This will help in enhancing the overall speed of the system and will help the visually Impaired to get the maximum necessary instructions as quickly as possible. The process starts from capturing the real time video, sending it for analysis and processing and get the calculated results. The results obtained from analysis are conveyed to user by means of hearing aid. As a result by this system the blind or the visually impaired people can visualize the surrounding environment and travel freely from source to destination on their own.


2021 ◽  
Author(s):  
Jaeseung Baek ◽  
Taha J. Alhindi ◽  
Young-Seon Jeong ◽  
Myong K. Jeong ◽  
Seongho Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document