scholarly journals A nonlinear viscoelastic–viscoplastic constitutive model for adhesives under creep

Author(s):  
Yi Chen ◽  
Lloyd V. Smith

AbstractIn this study, we consider the nonlinear viscoelastic–viscoplastic behavior of adhesive films in scarf joints. We develop a three-dimensional nonlinear model, which combines a nonlinear viscoelastic model with a viscoplastic model using the von Mises yield criterion and nonlinear kinematic hardening. We implement an iterative scheme for the viscoplastic solution and a numerical algorithm with stress correction for the combined viscoelastic–viscoplastic model into finite element analysis. The viscoelastic component of the model is calibrated using creep-recovery data from adhesive films in scarf joints. The viscoplastic parameters are calibrated from the residual strains of recovered creep tests with varying load durations. A two-dimensional form of the model shows good agreement with the three-dimensional model for the scarf joint considered in this work and is compared with experiment. The numerical results show favorable agreement with the experimental creep and recovery responses of two epoxy adhesive systems. We also discuss the contribution of nonlinear viscoelasticity and viscoplasticity to the stress/strain distribution along the adhesive center lines. Viscoplasticity tends to lower the stress concentration.

2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Chao Yu ◽  
Guozheng Kang ◽  
Fucong Lu ◽  
Yilin Zhu ◽  
Kaijuan Chen

A series of uniaxial tests (including multilevel loading–unloading recovery, creep-recovery, and cyclic tension–compression/tension ones) were performed to investigate the monotonic and cyclic viscoelastic–viscoplastic deformations of polycarbonate (PC) polymer at room temperature. The results show that the PC exhibits strong nonlinearity and rate-dependence, and obvious ratchetting occurs during the stress-controlled cyclic tension–compression/tension tests with nonzero mean stress, which comes from both the viscoelasticity and viscoplasticity of the PC. Based on the experimental observation, a nonlinear viscoelastic–viscoplastic cyclic constitutive model is then constructed. The viscoelastic part of the proposed model is constructed by extending the Schapery's nonlinear viscoelastic model, and the viscoplastic one is established by adopting the Ohno–Abdel-Karim's nonlinear kinematic hardening rule to describe the accumulation of irrecoverable viscoplastic strain produced during cyclic loading. Furthermore, the dependence of elastic compliance of the PC on the accumulated viscoplastic strain is considered. Finally, the capability of the proposed model is verified by comparing the predicted results with the corresponding experimental ones of the PC. It is shown that the proposed model provides reasonable predictions to the various deformation characteristics of the PC presented in the multilevel loading–unloading recovery, creep-recovery, and cyclic tension–compression/tension tests.


2014 ◽  
Vol 575 ◽  
pp. 497-500
Author(s):  
Mahmud Kori Effendi ◽  
Shuhei Zaitsu ◽  
Hiromitsu Kawaguchi ◽  
Akihiko Kawano ◽  
Shintaro Matsuo ◽  
...  

FEM analysis of MSC. Marc program is used to simulate the models. Three-dimensional FEM model with contact analysis between deformable body of specimens and rigid body of load are studied. The isotropic material and The Von Mises yield criterion are used and kinematic hardening is used as a flow plasticity model. The effect of various shapes of loading tips is investigated. The load-displacement were established. The results of these works are expected to be a useful reference for analyzing structures under various shapes of loading tips either static or dynamic loading.


1997 ◽  
Vol 273 (4) ◽  
pp. H1968-H1976 ◽  
Author(s):  
Kevin D. Costa ◽  
Karen May-Newman ◽  
Dyan Farr ◽  
Walter G. O’Dell ◽  
Andrew D. McCulloch ◽  
...  

All previous studies of residual strain in the ventricular wall have been based on one- or two-dimensional measurements. Transmural distributions of three-dimensional (3-D) residual strains were measured by biplane radiography of columns of lead beads implanted in the midanterior free wall of the canine left ventricle (LV). 3-D bead coordinates were reconstructed with the isolated arrested LV in the zero-pressure state and again after local residual stress had been relieved by excising a transmural block of tissue. Nonhomogeneous 3-D residual strains were computed by finite element analysis. Mean ± SD ( n = 8) circumferential residual strain indicated that the intact unloaded myocardium was prestretched at the epicardium (0.07 ± 0.06) and compressed in the subendocardium (−0.04 ± 0.05). Small but significant longitudinal shortening and torsional shear residual strains were also measured. Residual fiber strain was tensile at the epicardium (0.05 ± 0.06) and compressive in the subendocardium (−0.01 ± 0.04), with residual extension and shortening, respectively, along structural axes parallel and perpendicular to the laminar myocardial sheets. Relatively small residual shear strains with respect to the myofiber sheets suggest that prestretching in the plane of the myocardial laminae may be a primary mechanism of residual stress in the LV.


Author(s):  
Mohammad Bazzaz ◽  
Masoud K. Darabi ◽  
Dallas N. Little ◽  
Navneet Garg

This paper proposes a straightforward procedure to characterize the nonlinear viscoelastic response of asphalt concrete materials. Furthermore, a model is proposed to estimate the nonlinear viscoelastic parameters as a function of the triaxiality ratio, which accounts for both confinement and deviatoric stress levels. The simplified procedure allows for easy characterization of linear viscoelastic (LVE) and nonlinear viscoelastic (NVE) responses. First, Schapery’s nonlinear viscoelastic model is used to represent the viscoelastic behavior. Dynamic modulus tests are performed to calibrate LVE properties. Repeated creep-recovery tests at variable deviatoric stress levels (RCRT-VS) were designed and conducted to calibrate the nonlinear viscoelastic properties of four types of mixtures used in the Federal Aviation Administration’s National Airport Pavement and Materials Research Center test sections. The RCRT-VS were conducted at 55°C, 140 kPa initial confinement pressure, and wide range of deviatoric stress levels; mimicking the stress levels induced in a pavement structure under traffic. Once calibrated, the model was validated by comparing the model predictions and experimental measurements at different deviatoric stress levels. The predictions indicate that the proposed method is capable of characterizing NVE response of asphalt concrete materials.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Y. Li ◽  
S. Frimpong ◽  
W. Y. Liu

A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA) system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA) method and von Mises yield criterion using the Algor mechanical event simulation (MES) software. The three-dimensional (3D) distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.


1995 ◽  
Vol 117 (3) ◽  
pp. 422-429 ◽  
Author(s):  
C. Mayeur ◽  
P. Sainsot ◽  
L. Flamand

Pressure distributions due to surface roughness in contact induce high stresses just beneath the surface. These stresses can bring on crack initiation and micro-pitting. A purely elastic contact model to account for these effects is restrictive because stress fields often exceed the yield strength of the material. Plastic flow occurs and modifies the surface shape and material properties (work hardening). This paper presents a numerical model for elastoplastic rough contact. It allows the determination of real pressures and permanent surface displacements (flattening of asperities) as well as residual stress and plastic strains useful in fatigue analysis). The material is assumed to obey the Von-Mises yield criterion with linear kinematic hardening. Real surface profiles obtained from a measurement can be considered. In addition, simplified methods have been used to treat cyclic loading. Thus the ability of a rough surface to reach an elastic shakedown state can be investigated, even for a three-dimensional contact found, for instance, in roller bearings.


1991 ◽  
Vol 58 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes calculations for repeated, frictionless, three-dimensional rolling contact, for a relative peak pressure (po/k) of 6.0 (above the shakedown limit) for a circular contact patch. This analysis was carried out for two material responses, elastic-perfectly plastic (EPP) and elastic-linear-kinematic-hardening plastic (ELKP), using the elasto-plastic finite element model developed earlier. The ELKP material parameters are those appropriate for hardened bearing steel. Frictionless three-dimensional rolling contact is simulated by repeatedly translating a Hertzian pressure distribution across the surface of an elasto-plastic half space. The half space is represented by a finite mesh with elastic boundaries. The paper describes the complex stress state existing in the half space and the attending plasticity, as the load translates. The calculations present the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain increments in the vicinity of the contact. Compared with the analyses at the shakedown limit, higher residual stresses and strains are observed.


Sign in / Sign up

Export Citation Format

Share Document