Geldanamycin-Induced Morphological Changes Require Candida albicans Hyphal Growth Regulatory Machinery

2021 ◽  
Vol 186 (1) ◽  
pp. 103-107
Author(s):  
Stephen P. Saville ◽  
Ian A. Cleary
F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 700 ◽  
Author(s):  
Robert A. Arkowitz ◽  
Martine Bassilana

Morphological changes are critical for the virulence of a range of plant and human fungal pathogens. Candida albicans is a major human fungal pathogen whose ability to switch between different morphological states is associated with its adaptability and pathogenicity. In particular, C. albicans can switch from an oval yeast form to a filamentous hyphal form, which is characteristic of filamentous fungi. What mechanisms underlie hyphal growth and how are they affected by environmental stimuli from the host or resident microbiota? These questions are the focus of intensive research, as understanding C. albicans hyphal growth has broad implications for cell biological and medical research.


PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009622
Author(s):  
Jeffrey M. Hollomon ◽  
Zhongle Liu ◽  
Scott F. Rusin ◽  
Nicole P. Jenkins ◽  
Allia K. Smith ◽  
...  

Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities.


2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


2008 ◽  
Vol 19 (9) ◽  
pp. 3638-3651 ◽  
Author(s):  
Hannah Hope ◽  
Stéphanie Bogliolo ◽  
Robert A. Arkowitz ◽  
Martine Bassilana

Rho G proteins and their regulators are critical for cytoskeleton organization and cell morphology in all eukaryotes. In the opportunistic pathogen Candida albicans, the Rho G proteins Cdc42 and Rac1 are required for the switch from budding to filamentous growth in response to different stimuli. We show that Dck1, a protein with homology to the Ced-5, Dock180, myoblast city family of guanine nucleotide exchange factors, is necessary for filamentous growth in solid media, similar to Rac1. Our results indicate that Dck1 and Rac1 do not function in the same pathway as the transcription factor Czf1, which is also required for embedded filamentous growth. The conserved catalytic region of Dck1 is required for such filamentous growth, and in vitro this region directly binds a Rac1 mutant, which mimics the nucleotide-free state. In vivo overexpression of a constitutively active Rac1 mutant, but not wild-type Rac1, in a dck1 deletion mutant restores filamentous growth. These results indicate that the Dock180 guanine nucleotide exchange factor homologue, Dck1 activates Rac1 during invasive filamentous growth. We conclude that specific exchange factors, together with the G proteins they activate, are required for morphological changes in response to different stimuli.


2019 ◽  
Vol 124 ◽  
pp. 47-58 ◽  
Author(s):  
Chunhua Mu ◽  
Chaoying Pan ◽  
Qi Han ◽  
Qizheng Liu ◽  
Yue Wang ◽  
...  

Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1234-1243 ◽  
Author(s):  
Takahiro Oura ◽  
Susumu Kajiwara

C9-methylated glucosylceramide is a fungus-specific sphingolipid. This lipid is a major membrane component in the cell and is thought to play important roles in the growth and virulence of several fungal species. To investigate the importance of the methyl branch of the long-chain base in glucosylceramides in pathogenic fungi, we identified and characterized a sphingolipid C9-methyltransferase gene (MTS1, C9-MethylTransferase for Sphingolipid 1) in the pathogenic yeast Candida albicans. The mts1 disruptant lacked (E,E)-9-methylsphinga-4,8-dienine in its glucosylceramides and contained (E)-sphing-4-enine and (E,E)-sphinga-4,8-dienine. Reintroducing the MTS1 gene into the mts1 disruptant restored the synthesis of (E,E)-9-methylsphinga-4,8-dienine in the glucosylceramides. We also created a disruptant of the HSX11 gene, encoding glucosylceramide synthase, which catalyses the final step of glucosylceramide synthesis, in C. albicans and compared this mutant with the mts1 disruptant. The C. albicans mts1 and hsx11 disruptants both had a decreased hyphal growth rate compared to the wild-type strain. The hsx11 disruptant showed increased susceptibility to SDS and fluconazole, similar to a previously reported sld1 disruptant that contained only (E)-sphing-4-enine in its glucosylceramides, suggesting that these strains have defects in their cell membrane structures. In contrast, the mts1 disruptant grew similarly to wild-type in medium containing SDS or fluconazole. These results suggest that the C9-methyl group of a long-chain base in glucosylceramides plays an important role in the hyphal elongation of C. albicans independent of lipid membrane disruption.


Sign in / Sign up

Export Citation Format

Share Document