Morphological Changes of Candida albicans Induced by BMY-28864, a Highly Water-soluble Pradimicin Derivative

2006 ◽  
Vol 290 (4) ◽  
pp. F789-F794 ◽  
Author(s):  
Yasin Tayem ◽  
Tony R. Johnson ◽  
Brian E. Mann ◽  
Colin J. Green ◽  
Roberto Motterlini

Nephrotoxicity is one of the main side effects caused by cisplatin (CP), a widely used antineoplastic agent. Here, we examined the effect of a novel water-soluble carbon monoxide-releasing molecule (CORM-3) on CP-mediated cytotoxicity in renal epithelial cells and explored the potential therapeutic benefits of carbon monoxide in CP-induced nephrotoxicity in vivo. Exposure of LLC-PK1 cells to CP (50 μM) caused significant apoptosis as evidenced by caspase-3 activation and an increased number of floating cells. Treatment with CORM-3 (1–50 μM) resulted in a remarkable and concentration-dependent decrease in CP-induced caspase-3 activity and cell detachment. This effect involved activation of the cGMP pathway as 1H-oxadiazole [4, 3-a] quinoxaline-1-ore (ODQ), a guanylate cyclase inhibitor, completely abolished the protection elicited by CORM-3. Using a rat model of CP-induced renal failure, we found that treatment with CP (7.5 mg/kg) caused a significant elevation in plasma urea (6.6-fold) and creatinine (3.1-fold) levels, which was accompanied by severe morphological changes and marked apoptosis in tubules at the corticomedullary junction. A daily administration of CORM-3 (10 mg/kg ip), starting 1 day before CP treatment and continuing for 3 days thereafter, resulted in amelioration of renal function as shown by reduction of urea and creatinine levels to basal values, a decreased number of apoptotic tubular cells, and an improved histological profile. A negative control (iCORM-3) that is incapable of liberating CO failed to prevent renal dysfunction mediated by CP, indicating that CO is directly involved in renoprotection. Our data demonstrate that CORM-3 can be used as an effective therapeutic adjuvant in the treatment of CP-induced nephrotoxicity.


2019 ◽  
Vol 144 (5) ◽  
pp. 305-313
Author(s):  
Bo Xiao ◽  
David Jespersen

Turfgrasses have varying tolerance to waterlogging conditions. The objective of this study was to identify important root traits and physiological responses to waterlogging stress in seashore paspalum (Paspalum vaginatum) and bermudagrass (Cynodon sp.). After being exposed to waterlogging conditions for 28 days, turf quality, leaf photosynthesis, transpiration rate, stomatal conductance (gS), and root fresh weight were significantly decreased in bermudagrass, and root lipid peroxidation was significantly increased. However, seashore paspalum was found to be more tolerant to waterlogging conditions and changes in turf quality, photosynthesis, or lipid peroxidation were not seen. The waterlogging treatments increased specific root length (SRL), surface area, and volume and decreased root respiration and diameter to a greater extent in seashore paspalum compared with bermudagrass. Under waterlogging conditions, root aerenchyma formation was found in both seashore paspalum and bermudagrass, but to a greater extent in seashore paspalum. Both grasses exhibited significant increases in root water-soluble carbohydrate (WSC) but to a lesser extent in seashore paspalum than in bermudagrass. Shoot WSC remained unchanged in seashore paspalum but was significantly increased in bermudagrass. These results indicate greater root morphological changes such as root volume, SRL, and root porosity, as well as lower root respiration may be important contributors to waterlogging tolerance for seashore paspalum.


2008 ◽  
Vol 19 (9) ◽  
pp. 3638-3651 ◽  
Author(s):  
Hannah Hope ◽  
Stéphanie Bogliolo ◽  
Robert A. Arkowitz ◽  
Martine Bassilana

Rho G proteins and their regulators are critical for cytoskeleton organization and cell morphology in all eukaryotes. In the opportunistic pathogen Candida albicans, the Rho G proteins Cdc42 and Rac1 are required for the switch from budding to filamentous growth in response to different stimuli. We show that Dck1, a protein with homology to the Ced-5, Dock180, myoblast city family of guanine nucleotide exchange factors, is necessary for filamentous growth in solid media, similar to Rac1. Our results indicate that Dck1 and Rac1 do not function in the same pathway as the transcription factor Czf1, which is also required for embedded filamentous growth. The conserved catalytic region of Dck1 is required for such filamentous growth, and in vitro this region directly binds a Rac1 mutant, which mimics the nucleotide-free state. In vivo overexpression of a constitutively active Rac1 mutant, but not wild-type Rac1, in a dck1 deletion mutant restores filamentous growth. These results indicate that the Dock180 guanine nucleotide exchange factor homologue, Dck1 activates Rac1 during invasive filamentous growth. We conclude that specific exchange factors, together with the G proteins they activate, are required for morphological changes in response to different stimuli.


2018 ◽  
Author(s):  
Xiaole Pan ◽  
Baozhu Ge ◽  
Zhe Wang ◽  
Yu Tian ◽  
Hang Liu ◽  
...  

Abstract. Depolarization ratio (δ) of backscattered light from aerosol particle is an applicable parameter for real-time distinguishing spherical and non-spherical particles, which has been widely adopted by ground-based Lidar observation and satellite remote sensing. From November 2016 to February of 2017, it consecutively suffered from numbers of severe air pollution at Beijing with daily averaged mass concentration of PM2.5 (aerodynamic diameter less than 2.5 μm) larger than 150 μg/m3. We preformed concurrent measurements of water-soluble chemical species and depolarization properties of aerosol particles on the basis of a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-14) and a bench-top optical particle counter with a polarization detection module (POPC). We found that δ value of ambient particles generally decrease as mass concentration of PM2.5 increased at unfavorable meteorological condition. Ratio of mass concentration of nitrate (NO3−) to that of sulfate (SO42−) in PM2.5 was 1.5 ± 0.6, indicating of great importance of NOx in the formation of heavy pollution. Mass concentration of NO3− in PM2.5 (fNO3) was generally an order of magnitude higher than that in coarse mode (cNO3) with a mean fNO3 / cNO3 ratio of 14 ± 10. Relatively high allocation (fNO3/cNO3 = 5) of NO3− in coarse mode could be partially attributed to hygroscopic growth/coagulation of nitrate-rich fine mode particles under higher relative humidity condition. As a result, δ values of particles with Dp = 2 μm (δDp = 2) and 5 μm (δDp = 5) decreased evidently as the mass fraction of water-soluble species (NO3− and SO42−) increase in both PM2.5 and PM2.5–10, respectively. In particular, due to synergistic effect of RH, δDp = 5 value could decrease by 50 % as mass fraction of NO3− in PM2.5–10 increased from 8 % to 23 %. It suggested that alteration of non-sphericity of mineral dust particles was evident owing to coating with pollutants and heterogeneous reactions on the surface of the particle during heavy pollution period. This study brings the attention to great variability of morphological changes of aerosol particles along the transport, which have great complex effects in evaluating their climate and health effect.


2021 ◽  
Vol 7 (3) ◽  
pp. 209
Author(s):  
Linda C. Horianopoulos ◽  
James W. Kronstad

The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.


Mycoses ◽  
2009 ◽  
Vol 34 (7-8) ◽  
pp. 287-292 ◽  
Author(s):  
B. Montès ◽  
M. Mallié ◽  
S. Jouvert ◽  
J. M. Bastide

1963 ◽  
Vol 41 (10) ◽  
pp. 2621-2627 ◽  
Author(s):  
H. Alfes ◽  
C. T. Bishop ◽  
F. Blank

A levorotatory glucan with a minimum degree of polymerization of 36 has been isolated from the water-soluble polysaccharides of the dermatophyte Microsporum quinckeanum. Hydrolysis of the methylated glucan yielded the following O-methyl-D-glucoses: 2,3,4,6-tetra-(10.2 mole%); 2,3,4-tri- (57.7 mole%); 2,4,6-tri- (22.2 mole%); 2,4-di- (8.2 mole%); and 2-mono- (1.6 mole%). The glucan consumed 1.53 moles of periodate with production of 0.70 mole of formic acid per mole anhydroglucose. Reduction and hydrolysis of the periodate-oxidized glucan yielded glycerol, erythritol, and D-glucose in a molar ratio of 72.3:0.6:27.1. The results showed that the glucan consisted of β-D-glucopyranose units joined in straight chains by 1 → 6 (57%) and 1 → 3 (24%) linkages. Approximately 3 in every 37 glucose residues constitute branch points in the glucan with branches occurring at the C6 and C3 positions of the same glucose unit. The glucan bears some resemblance to the yeast glucans of Saccharomyces cerevisiae and Candida albicans but differs from them in the relative number of 1 → 6 and 1 → 3 linkages and in the degree of branching.


Sign in / Sign up

Export Citation Format

Share Document