scholarly journals The Candida albicans Cdk8-dependent phosphoproteome reveals repression of hyphal growth through a Flo8-dependent pathway

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009622
Author(s):  
Jeffrey M. Hollomon ◽  
Zhongle Liu ◽  
Scott F. Rusin ◽  
Nicole P. Jenkins ◽  
Allia K. Smith ◽  
...  

Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities.

2021 ◽  
Author(s):  
Jeffrey Hollomon ◽  
Zhongle Liu ◽  
Scott Rusin ◽  
Nicole P. Jenkins ◽  
Allia K. Smith ◽  
...  

Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In  Candida albicans , the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog  3-MB-PP1 . Consistent with  ssn3  null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential.  Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate  C. albicans  morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent activity, suggesting that Ssn3 kinase activity negatively regulates Flo8. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids.  Here, we show that  FLO8  and  STP2 , a transcription factor involved in amino acid utilization, are required for  ssn3 ?/? phenotype, but that loss of the Ssn3 phosphosites identified in Flo8 was not sufficient to phenocopy the  ssn3 ?/? mutant. These data highlight the spectrum of processes affected by the modulation of Ssn3 activity and underscore the importance of considering Ssn3 function in the control of transcription factor activities.


2008 ◽  
Vol 19 (4) ◽  
pp. 1509-1518 ◽  
Author(s):  
Alberto González-Novo ◽  
Jaime Correa-Bordes ◽  
Leticia Labrador ◽  
Miguel Sánchez ◽  
Carlos R. Vázquez de Aldana ◽  
...  

When Candida albicans yeast cells receive the appropriate stimulus, they switch to hyphal growth, characterized by continuous apical elongation and the inhibition of cell separation. The molecular basis of this inhibition is poorly known, despite its crucial importance for hyphal development. In C. albicans, septins are important for hypha formation and virulence. Here, we used fluorescence recovery after photobleaching analysis to characterize the dynamics of septin rings during yeast and hyphal growth. On hyphal induction, septin rings are converted to a hyphal-specific state, characterized by the presence of a frozen core formed by Sep7/Shs1, Cdc3 and Cdc12, whereas Cdc10 is highly dynamic and oscillates between the ring and the cytoplasm. Conversion of septin rings to the hyphal-specific state inhibits the translocation of Cdc14 phosphatase, which controls cell separation, to the hyphal septum. Modification of septin ring dynamics during hyphal growth is dependent on Sep7 and the hyphal-specific cyclin Hgc1, which partially controls Sep7 phosphorylation status and protein levels. Our results reveal a link between the cell cycle machinery and septin cytoskeleton dynamics, which inhibits cell separation in the filaments and is essential for hyphal morphogenesis.


2010 ◽  
Vol 9 (4) ◽  
pp. 634-644 ◽  
Author(s):  
Adnane Sellam ◽  
Christopher Askew ◽  
Elias Epp ◽  
Faiza Tebbji ◽  
Alaka Mullick ◽  
...  

ABSTRACT The NDT80/PhoG transcription factor family includes ScNdt80p, a key modulator of the progression of meiotic division in Saccharomyces cerevisiae. In Candida albicans, a member of this family, CaNdt80p, modulates azole sensitivity by controlling the expression of ergosterol biosynthesis genes. We previously demonstrated that CaNdt80p promoter targets, in addition to ERG genes, were significantly enriched in genes related to hyphal growth. Here, we report that CaNdt80p is indeed required for hyphal growth in response to different filament-inducing cues and for the proper expression of genes characterizing the filamentous transcriptional program. These include noteworthy genes encoding cell wall components, such as HWP1, ECE1, RBT4, and ALS3. We also show that CaNdt80p is essential for the completion of cell separation through the direct transcriptional regulation of genes encoding the chitinase Cht3p and the cell wall glucosidase Sun41p. Consistent with their hyphal defect, ndt80 mutants are avirulent in a mouse model of systemic candidiasis. Interestingly, based on functional-domain organization, CaNdt80p seems to be a unique regulator characterizing fungi from the CTG clade within the subphylum Saccharomycotina. Therefore, this study revealed a new role of the novel member of the fungal NDT80 transcription factor family as a regulator of cell separation, hyphal growth, and virulence.


mBio ◽  
2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Melanie Wellington ◽  
Kristy Koselny ◽  
Damian J. Krysan

ABSTRACTThe interaction ofCandida albicanswith macrophages induces the production of interleukin 1β (IL-1β) through inflammasome activation in a process that is required for host survival.C. albicanshypha formation has been linked to IL-1β production, but the question of whether hyphae are sufficient to trigger IL-1β production has not been examined directly. To address this question, aC. albicanslibrary of 165 transcription factor deletion mutants was screened for strains with altered IL-1β production by lipopolysaccharide (LPS)-primed J774 cells, a murine macrophage-like cell line. Eight mutants with decreased and two mutants with increased IL-1β secretion were identified. In addition, 12 mutants with previously identified morphology deficits were found to induce IL-1β secretion to levels similar to those of the wild type. Examination of the morphology of both low and normal IL-1β-inducing mutants in macrophages revealed that two mutants (upc2Δ/upc2Δ andahr1Δ/Δ mutants) were indistinguishable from the wild type with respect to morphology yet induced low levels of IL-1β; conversely, thendt80Δ/Δ mutant was deficient for hypha formation but induced levels of IL-1β similar to those of the wild type. Transcription factor mutants deficient for IL-1β secretion also caused markedly lower levels of macrophage lysis. Similarly, the ability of a mutant to cause macrophage lysis was independent of its ability to form hyphae. Taken together, our observations indicate that the physical formation of hyphae is not sufficient to trigger IL-1β secretion or macrophage lysis and suggest that other mechanisms, such as pyroptosis, a caspase-1-dependent response to intracellular pathogens, may play a role in the interaction of macrophages withC. albicans.IMPORTANCEThe ability ofCandida albicansto transition from yeast to filamentous cells plays an important and complex role in pathogenesis. Recent results from a number of investigators indicate that the host responds to yeast and hyphalC. albicansdifferently. For example, aC. albicansmutant unable to form hyphae also fails to induce interleukin 1β (IL-1β) secretion from macrophages. We have identifiedC. albicanstranscription factor mutants that have decreased IL-1β secretion but retain the ability to form hyphae in response to macrophages. In addition, these mutants cause significantly less macrophage lysis. These observations indicate that the physical presence of the hyphal structure in the macrophage is not sufficient to trigger IL-1β secretion nor does it cause physical lysis of the cell. Our data indicate that characteristics of hyphae separate from its physical morphology are responsible for triggering the release of IL-1β release and causing macrophage lysis. Since these observations are inconsistent with some current models, alternative mechanisms for the interaction ofC. albicanswith macrophages must be considered.


Genetics ◽  
2021 ◽  
Author(s):  
Raha Parvizi Omran ◽  
Bernardo Ramírez-Zavala ◽  
Walters Aji Tebung ◽  
Shuangyan Yao ◽  
Jinrong Feng ◽  
...  

Abstract Zinc cluster transcription factors are essential fungal regulators of gene expression. In the pathogen Candida albicans, the gene orf19.1604 encodes a zinc cluster transcription factor regulating filament development. Hyperactivation of orf19.1604, which we have named RHA1 for Regulator of Hyphal Activity, generates wrinkled colony morphology under non-hyphal growth conditions, triggers filament formation, invasiveness, and enhanced biofilm formation and causes reduced virulence in the mouse model of systemic infection. The strain expressing activated Rha1 shows up-regulation of genes required for filamentation and cell-wall-adhesion-related proteins. Increased expression is also seen for the hyphal-inducing transcription factors Brg1 and Ume6, while the hyphal repressor Nrg1 is downregulated. Inactivation of RHA1 reduces filamentation under a variety of filament-inducing conditions. In contrast to the partial effect of either single mutant, the double rha1 ume6 mutant strain is highly defective in both serum- and Spider-medium-stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization even in brg1 ume6 double mutants. Thus, in response to external signals, Rha1 functions with other morphogenesis regulators including Brg1 and Ume6, to mediate filamentation.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 700 ◽  
Author(s):  
Robert A. Arkowitz ◽  
Martine Bassilana

Morphological changes are critical for the virulence of a range of plant and human fungal pathogens. Candida albicans is a major human fungal pathogen whose ability to switch between different morphological states is associated with its adaptability and pathogenicity. In particular, C. albicans can switch from an oval yeast form to a filamentous hyphal form, which is characteristic of filamentous fungi. What mechanisms underlie hyphal growth and how are they affected by environmental stimuli from the host or resident microbiota? These questions are the focus of intensive research, as understanding C. albicans hyphal growth has broad implications for cell biological and medical research.


2004 ◽  
Vol 3 (3) ◽  
pp. 724-734 ◽  
Author(s):  
Alysia L. vandenBerg ◽  
Ashraf S. Ibrahim ◽  
John E. Edwards ◽  
Kurt A. Toenjes ◽  
Douglas I. Johnson

ABSTRACT The yeast Candida albicans is a major opportunistic pathogen of immunocompromised individuals. It can grow in several distinct morphological states, including budded and hyphal forms, and the ability to make the dynamic transition between these forms is strongly correlated with virulence. Recent studies implicating the Cdc42p GTPase in hypha formation relied on cdc42 mutations that affected the mitotic functions of the protein, thereby precluding any substantive conclusions about the specific role of Cdc42p in the budded-to-hypha-form transition and virulence. Therefore, we took advantage of several Saccharomyces cerevisiae cdc42 mutants that separated Cdc42p's mitotic functions away from its role in filamentous growth. The homologous cdc42-S26I, cdc42-E100G, and cdc42-S158T mutations in C. albicans Cdc42p caused a dramatic defect in the budded-to-hypha-form transition in response to various hypha-inducing signals without affecting normal budded growth, strongly supporting the conclusion that Cdc42p has an integral function in orchestrating the morphological transition in C. albicans. In addition, the cdc42-S26I and cdc42-E100G mutants demonstrated a reduced ability to damage endothelial cells, a process that is strongly correlated to virulence. The three mutants also had reduced expression of several hypha-specific genes, including those under the regulation of the Efg1p transcription factor. These data indicate that Cdc42p-dependent signaling pathways regulate the budded-to-hypha-form transition and the expression of hypha-specific genes.


2013 ◽  
Vol 12 (4) ◽  
pp. 604-613 ◽  
Author(s):  
Florian Hennicke ◽  
Maria Grumbt ◽  
Ulrich Lermann ◽  
Nico Ueberschaar ◽  
Katja Palige ◽  
...  

ABSTRACTThe amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeastCandida albicansexcretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine inC. albicansrelies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of theCDG1gene inC. albicans, but also the expression ofSSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion ofSSU1resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened aC. albicanslibrary of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducibleSSU1andCDG1gene expression.cdg1Δ andssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity ofC. albicans. Moreover,cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production byC. albicanssuggests diverse roles during host adaptation and pathogenicity.


2014 ◽  
Vol 13 (9) ◽  
pp. 1169-1180 ◽  
Author(s):  
Sarah Saputo ◽  
Anuj Kumar ◽  
Damian J. Krysan

ABSTRACT The cyclic AMP/protein kinase A (cAMP/PKA) and r egulation of A ce2 and m orphogenesis (RAM) pathways are important regulators of the yeast-to-hypha transition in Candida albicans that interact genetically during this process. To further understand this interaction, we have characterized the expression of ACE2 during morphogenesis. In normoxic, planktonic conditions, ACE2 expression is very low in stationary-phase cells at both the mRNA and protein levels. Upon shifting to Spider medium, ACE2/ Ace2p levels increase. Although Ace2 is not absolutely required for hypha formation, ace2 Δ/Δ mutants show delayed hypha formation in Spider medium (but not others) and morphological changes to the hyphal tip and lateral yeast. We also show that Efg1 directly binds the promoter of Ace2 in stationary phase, and ACE2 levels are increased in strains lacking Efg1 and the protein kinase A proteins Tpk1 and Tpk2, indicating that the PKA pathway directly regulates ACE2 expression. ACE2 expression is positively regulated by Tec1 and Brg1, which bind the promoters of ACE2 in hyphal cells but not in the yeast phase. Under embedded conditions, Efg1 is dispensable for filamentation and Ace2 is required. We have found that ACE2 expression is much higher in embedded cells than in planktonic cells, providing a potential rationale for this observation. Taken together, our observations indicate that the PKA pathway directly regulates the RAM pathway under specific conditions and are consistent with a model where the two pathways carry out similar functions that depend on the specific environmental context.


Sign in / Sign up

Export Citation Format

Share Document