3D Modeling of Large-Scale Geological Structures by Linear Combinations of Implicit Functions: Application to a Large Banded Iron Formation

Author(s):  
Liang Yang ◽  
Peter Achtziger-Zupančič ◽  
Jef Caers
2019 ◽  
Vol 5 (11) ◽  
pp. eaav2869 ◽  
Author(s):  
Katharine J. Thompson ◽  
Paul A. Kenward ◽  
Kohen W. Bauer ◽  
Tyler Warchola ◽  
Tina Gauger ◽  
...  

Banded iron formation (BIF) deposition was the likely result of oxidation of ferrous iron in seawater by either oxygenic photosynthesis or iron-dependent anoxygenic photosynthesis—photoferrotrophy. BIF deposition, however, remains enigmatic because the photosynthetic biomass produced during iron oxidation is conspicuously absent from BIFs. We have addressed this enigma through experiments with photosynthetic bacteria and modeling of biogeochemical cycling in the Archean oceans. Our experiments reveal that, in the presence of silica, photoferrotroph cell surfaces repel iron (oxyhydr)oxides. In silica-rich Precambrian seawater, this repulsion would separate biomass from ferric iron and would lead to large-scale deposition of BIFs lean in organic matter. Excess biomass not deposited with BIF would have deposited in coastal sediments, formed organic-rich shales, and fueled microbial methanogenesis. As a result, the deposition of BIFs by photoferrotrophs would have contributed fluxes of methane to the atmosphere and thus helped to stabilize Earth’s climate under a dim early Sun.


Solid Earth ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 573-598 ◽  
Author(s):  
Ernest Chi Fru ◽  
Stephanos Kilias ◽  
Magnus Ivarsson ◽  
Jayne E. Rattray ◽  
Katerina Gkika ◽  
...  

Abstract. An early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on a basement consisting of andesites in a ∼ 150 m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF) sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ∼ −25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ⋅ nH2O) while crystalline quartz (SiO2) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean–atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.


2017 ◽  
Author(s):  
Ernest Chi Fru ◽  
Stephanos Kilias ◽  
Magnus Ivarsson ◽  
Jayne E. Rattray ◽  
Katerina Gkika ◽  
...  

Abstract. An Early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Sedimentary, stratigraphic reconstruction, biogeochemical analysis and micro-nanoscale mineralogical characterization confirms the Milos rocks as modern Precambrian BIF analogues. Spatial coverage of the BIF-type rocks in relation to the economic grade Mn ore that brought prominence to the CVSB implicates tectonic activity and changing redox in the deposition of the BIF-type rocks. Field-wide stratigraphic and biogeochemical reconstruction demonstrates two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggest the previously described photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on basement andesite in a ~ 150 m wide basin, in the SW margin of the basin. A strongly banded non-fossiliferous IF (NFIF) caps the Mn-rich sandstones at the transition to the renowned Mn-rich formation. Geochemical evidence relates the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions apparently predominated by anoxia, similar to the MFIF. This is manifested in the lack of shale-normalized Ce anomalies. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ~ −25 ‰. However, a similar δ13Corg signature in the MFIF is not directly coupled to hematite by mineralogy. The NFIF, which post dates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 · nH2O) while crystalline quartz (SiO2) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity and abiotic Si precipitation, formed the unmetamorphosed BIF-type deposits.


Author(s):  
Donald Eugene Canfield

This chapter considers the aftermath of the great oxidation event (GOE). It suggests that there was a substantial rise in oxygen defining the GOE, which may, in turn have led to the Lomagundi isotope excursion, which was associated with high rates of organic matter burial and perhaps even higher concentrations of oxygen. This excursion was soon followed by a crash in oxygen to very low levels and a return to banded iron formation deposition. When the massive amounts of organic carbon buried during the excursion were brought into the weathering environment, they would have represented a huge oxygen sink, drawing down levels of atmospheric oxygen. There appeared to be a veritable seesaw in oxygen concentrations, apparently triggered initially by the GOE. The GOE did not produce enough oxygen to oxygenate the oceans. Dissolved iron was removed from the oceans not by reaction with oxygen but rather by reaction with sulfide. Thus, the deep oceans remained anoxic and became rich in sulfide, instead of becoming well oxygenated.


Author(s):  
Peter R. Dawes ◽  
Bjørn Thomassen ◽  
T.I. Hauge Andersson

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Dawes, P. R., Thomassen, B., & Andersson, T. H. (2000). A new volcanic province: evidence from glacial erratics in western North Greenland. Geology of Greenland Survey Bulletin, 186, 35-41. https://doi.org/10.34194/ggub.v186.5213 _______________ Mapping and regional geological studies in northern Greenland were carried out during the project Kane Basin 1999 (see Dawes et al. 2000, this volume). During ore geological studies in Washington Land by one of us (B.T.), finds of erratics of banded iron formation (BIF) directed special attention to the till, glaciofluvial and fluvial sediments. This led to the discovery that in certain parts of Daugaard-Jensen Land and Washington Land volcanic rocks form a common component of the surficial deposits, with particularly colourful, red porphyries catching the eye. The presence of BIF is interesting but not altogether unexpected since BIF erratics have been reported from southern Hall Land just to the north-east (Kelly & Bennike 1992) and such rocks crop out in the Precambrian shield of North-West Greenland to the south (Fig. 1; Dawes 1991). On the other hand, the presence of volcanic erratics was unexpected and stimulated the work reported on here.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Benjamin Tutolo ◽  
Bernard Evans ◽  
Scott Kuehner

We present microanalyses of secondary phyllosilicates in altered ferroan metaperidotite, containing approximately equal amounts of end-members serpentine ((Mg,Fe2+)3Si2O5(OH)4) and hisingerite (□Fe3+2Si2O5(OH)4·nH2O). These analyses suggest that all intermediate compositions can exist stably, a proposal that was heretofore impossible because phyllosilicate with the compositions reported here have not been previously observed. In samples from the Duluth Complex (Minnesota, USA) containing igneous olivine Fa36–44, a continuous range in phyllosilicate compositions is associated with hydrothermal Mg extraction from the system and consequent relative enrichments in Fe2+, Fe3+ (hisingerite), Si, and Mn. Altered ferroan–olivine-bearing samples from the Laramie Complex (Wyoming, USA) show a compositional variability of secondary FeMg–phyllosilicate (e.g., Mg–hisingerite) that is discontinuous and likely the result of differing igneous olivine compositions and local equilibration during alteration. Together, these examples demonstrate that the products of serpentinization of ferroan peridotite include phyllosilicate with iron contents proportionally larger than the reactant olivine, in contrast to the common observation of Mg-enriched serpentine in “traditional” alpine and seafloor serpentinites. To augment and contextualize our analyses, we additionally compiled greenalite and hisingerite analyses from the literature. These data show that greenalite in metamorphosed banded iron formation contains progressively more octahedral-site vacancies (larger apfu of Si) in higher XFe samples, a consequence of both increased hisingerite substitution and structure modulation (sheet inversions). Some high-Si greenalite remains ferroan and seems to be a structural analogue of the highly modulated sheet silicate caryopilite. Using a thermodynamic model of hydrothermal alteration in the Fe–silicate system, we show that the formation of secondary hydrothermal olivine and serpentine–hisingerite solid solutions after primary olivine may be attributed to appropriate values of thermodynamic parameters such as elevated a S i O 2 ( a q ) and decreased a H 2 ( a q ) at low temperatures (~200 °C). Importantly, recent observations of Martian rocks have indicated that they are evolved magmatically like the ferroan peridotites analyzed here, which, in turn, suggests that the processes and phyllosilicate assemblages recorded here are more directly relevant to those occurring on Mars than are traditional terrestrial serpentinites.


Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 271 ◽  
Author(s):  
Michael Zhdanov ◽  
Fouzan Alfouzan ◽  
Leif Cox ◽  
Abdulrahman Alotaibi ◽  
Mazen Alyousif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document