scholarly journals Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans

2019 ◽  
Vol 5 (11) ◽  
pp. eaav2869 ◽  
Author(s):  
Katharine J. Thompson ◽  
Paul A. Kenward ◽  
Kohen W. Bauer ◽  
Tyler Warchola ◽  
Tina Gauger ◽  
...  

Banded iron formation (BIF) deposition was the likely result of oxidation of ferrous iron in seawater by either oxygenic photosynthesis or iron-dependent anoxygenic photosynthesis—photoferrotrophy. BIF deposition, however, remains enigmatic because the photosynthetic biomass produced during iron oxidation is conspicuously absent from BIFs. We have addressed this enigma through experiments with photosynthetic bacteria and modeling of biogeochemical cycling in the Archean oceans. Our experiments reveal that, in the presence of silica, photoferrotroph cell surfaces repel iron (oxyhydr)oxides. In silica-rich Precambrian seawater, this repulsion would separate biomass from ferric iron and would lead to large-scale deposition of BIFs lean in organic matter. Excess biomass not deposited with BIF would have deposited in coastal sediments, formed organic-rich shales, and fueled microbial methanogenesis. As a result, the deposition of BIFs by photoferrotrophs would have contributed fluxes of methane to the atmosphere and thus helped to stabilize Earth’s climate under a dim early Sun.

Author(s):  
Mohamed Samuel Moriah Conté ◽  
Abdellah Boushaba ◽  
Ali Moukadiri

The Nimba Range and its western extension are located in the Nimba region on the borders of the Republic of Guinea, Liberia and Côte d'Ivoire. It is a mountainous region made up of metavolcanic and metasedimentary rocks. Metavolcanic rocks are gneisses, granites, amphibolites and quartzites, which constitute the lower part of Archean age. The upper part consists of Proterozoic rocks of metasedimentary origin. It contains important deposits of itabirites which occupy the top of the mountains and hills of the region. The petrographic study of the banded iron formations reveals the existence of silicate banded iron formations (SIF) and oxidized banded iron formations (OIF). The results of the scanning electron microscope (SEM) and metallogenic analyzes show the presence of iron minerals (magnetites, hematites, pyrites, goethites, martites and siderites). These analyzes also reveal the presence of the metamorphic index minerals associated with the banded iron formations, hence the existence of several types of ferriferous formations (silicate (SIF) and oxidized (OIF) banded iron formations). Overall, there is an increase in the degree of regional metamorphism from east to west of the Nimba region. The geochemical analysis of the banded iron formations reveals that with the exception of Na2O, all the major elements have a negative linear correlation although dispersed with Fe2O3. This correlation is explained by a decrease in quartz, garnet, micas (muscovite and biotite), amphibole, pyroxene, plagioclase, titanium and phosphorus contents. Conversely, there is an increase in iron ore content: magnetites, pyrites, hematites, goethite. But the alkali content remains constant in these banded iron formations. Then, the lower the Fe2O3content, the higher the FeO content, while those of SiO2and Al2O3are constant in all of these formations in the Nimba region except in the chlorite banded iron formation where both are anticorelated. Finally, the ratio SiO2/ Fe2O3vs MgO + CaO + MnO / Fe2O3of the banded iron formations of the Nimba region compared to the same formations of the whole world allows to give them Proterozoic age. Some itabirites have high levels of magnetite, hematite, and goethite (same feature as itabirites of Lac supérieur and Pic de fon) and only chlorite itabirite has a low to medium Mg-Si-BIF content.


2017 ◽  
Vol 17 (2) ◽  
pp. 303 ◽  
Author(s):  
Vitor Rodrigues Barrote ◽  
Carlos Alberto Rosiere ◽  
Vassily Khoury Rolim ◽  
João Orestes Schneider Santos ◽  
Neal Jesse Mcnaughton

The Guanhães banded iron formation (BIF) bearing succession occurs as tectonic slices, juxtaposed to Archean TTG granite-gneissic basement rock, developed during the Neoproterozoic-Cambrian Brasiliano collage. The succession has a maximum depositional age of ~2.18 Ga, from detrital zircons in quartzite, and consists of quartzites, schists, BIFs, gneiss and amphibolite, all metamorphosed under amphibolite facies conditions. The Guanhães BIF shows HREE enrichment and consistent positive Eu anomaly (PAAS-normalized REE+Y). Two types of contamination were observed in the samples. The first is contamination by an exotic detrital component, which resulted in low Y/Ho (<30) and Pr/Yb (SN) ratios. Evidence of such contamination, combined with inferred stratigraphic stacking data, indicates that the Guanhães BIFs were deposited on a shallow marine environment. The second type of contamination resulted in higher Eu-anomalies, positive Ce-anomalies, and higher REE+Y concentrations, possibly due to the interaction between later magmatic fluids and the Guanhães BIF. A strong Cambrian event is recorded in zircon age data. The uncontaminated samples display REE+Y distribution similar to other Precambrian BIFs, particularly those from the Morro-Escuro Sequence and the Serra da Serpentina Group, without true Ce-anomalies and Y/Ho close to seawater values (45). Geochronological and geochemical data presented in this paper strongly suggest a correlation between the Guanhães supracrustal succession and the Serra da Serpentina and Serra de São José Groups.


Geology ◽  
2020 ◽  
Vol 48 (7) ◽  
pp. 688-692
Author(s):  
Birger Rasmussen ◽  
Janet R. Muhling

Abstract The 1.88 Ga Gunflint Formation in Ontario, Canada, has played a key role in the development of current models for the deposition of iron formations. The presence of hematite-rich iron formation intercalated with chert stromatolites containing purported cyanobacterial microfossils sparked the idea that biology was the principal driver of Fe2+ oxidation and iron deposition. However, despite the abundance of hematite in the Gunflint Formation, a primary depositional origin has not been established. Here we present evidence for the replacement of Fe-silicate granules by hematite in drill core intersecting the Gunflint Formation. Iron-oxide replacement proceeded inwards from granule boundaries and along intergranular fractures, producing iron oxide–rich rims around Fe-silicate cores. The abundance of organic matter in shaly iron formation implies that the iron-rich mudstones experienced anoxic diagenesis and that coexisting hematite was not depositional but formed after burial. Widespread distribution of the alteration textures indicates that this was a large-scale process and that much of the hematite is not primary. Lifting the veil of oxidative overprinting reveals an iron-rich sediment that was originally more reduced and dominated by Fe(II)-rich minerals. Our results imply that a major assumption underpinning the original model for biological iron oxidation as the driver of iron formation deposition may be flawed, raising broader questions about the origin of hematite in other iron formations and the role of biology in iron deposition in the early oceans.


Geology ◽  
2021 ◽  
Author(s):  
Birger Rasmussen ◽  
Janet R. Muhling ◽  
Alexandra Suvorova ◽  
Woodward W. Fischer

Phosphorus is an essential nutrient that is thought to have regulated primary productivity in global oceans after the advent of oxygenic photosynthesis. The prime source of seawater phosphorus is regarded to be continental weathering of phosphate minerals. Ancient seawater phosphorus concentrations have been constrained using the phosphorus content of iron-rich chemical sediments—banded iron formations (BIFs); however, the removal processes and depositional phases remain unclear. Here we report that nanometer-sized apatite crystals (&lt;500 nm) are ubiquitous in 3.46–2.46 Ga BIFs and cherts from the Kaapvaal (South Africa) and Yilgarn and Pilbara (Western Australia) cratons. The apatite is uniformly dispersed in a chemical sediment comprising greenalite nanoparticles, which were encased in very early diagenetic silica cement that limited compaction and chemical reactions. The lack of organic carbon (below detection; &lt;0.3 wt%) and absence of primary iron oxides implies that the phosphorus was not derived from the degradation of organic matter or seawater scavenging by oxide particles. Instead, the occurrence of apatite in sediments derived from hydrothermally sourced Fe2+ and SiO2(aq) suggests that phosphorus too was derived from vent plumes. Today, seawater P is rapidly removed from vent fluids due to scavenging by oxidized Fe2+. However, prior to the Great Oxidation Event (2.45–2.32 Ga), dissolved phosphorus released during anoxic alteration of seafloor basalts escaped the iron-oxidation trap. Our results point to the existence of a submarine hydrothermal flux of dissolved phosphorus that supplied nutrients to the early anoxic oceans. High amounts of seawater P may help to explain why phosphorus is ubiquitous in cell biology—it was not limiting during the origin and early evolution of life.


2015 ◽  
Vol 15 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Elif Koeksoy ◽  
Maximilian Halama ◽  
Kurt O. Konhauser ◽  
Andreas Kappler

AbstractEarly Earth processes are typically identified through the study of mineralogical, elemental and isotopic features in the rock record, including Precambrian banded iron formations (BIF). However, post-depositional processes often obscure the primary geochemical signals, making the use of BIF as proxies for paleo-seawater and the paleo-biosphere potentially imprecise. Thus, alternative approaches are required to complement the information gained from the rock record in order to fully understand the distinctive biogeochemical processes on ancient Earth. Simulating these conditions in the laboratory is one approach, but this approach can never fully replicate the complexity of a natural environment. Therefore, finding modern environments with a unique set of geochemical and microbiological characteristics to use as analogues for BIF depositional environments can provide invaluable information. In this review, we provide an overview of the chemical, physical and biological parameters of modern, ferruginous lakes that have been used as analogue BIF environments.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Xiaoxue Tong ◽  
Kaarel Mänd ◽  
Yuhao Li ◽  
Lianchang Zhang ◽  
Zidong Peng ◽  
...  

Banded iron formations (BIFs) are enigmatic chemical sedimentary rocks that chronicle the geochemical and microbial cycling of iron and carbon in the Precambrian. However, the formation pathways of Fe carbonate, namely siderite, remain disputed. Here, we provide photomicrographs, Fe, C and O isotope of siderite, and organic C isotope of the whole rock from the ~2.52 Ga Dagushan BIF in the Anshan area, China, to discuss the origin of siderite. There are small magnetite grains that occur as inclusions within siderite, suggesting a diagenetic origin of the siderite. Moreover, the siderites have a wide range of iron isotope compositions (δ56FeSd) from −0.180‰ to +0.463‰, and a relatively negative C isotope composition (δ13CSd = −6.20‰ to −1.57‰). These results are compatible with the reduction of an Fe(III)-oxyhydroxide precursor to dissolved Fe(II) through microbial dissimilatory iron reduction (DIR) during early diagenesis. Partial reduction of the precursor and possible mixing with seawater Fe(II) could explain the presence of siderite with negative δ56Fe, while sustained reaction of residual Fe(III)-oxyhydroxide could have produced siderite with positive δ56Fe values. Bicarbonate derived from both DIR and seawater may have provided a C source for siderite formation. Our results suggest that microbial respiration played an important role in the formation of siderite in the late Archean Dagushan BIF.


1993 ◽  
Vol 30 (8) ◽  
pp. 1566-1581 ◽  
Author(s):  
R. Craig Ford ◽  
Norman A. Duke

Gold-bearing iron formations are widely distributed within extensive metasedimentary terranes of the Archean Slave Province, situated in the northwestern Canadian Precambrian Shield. Mineralized iron formations occur within thick turbidite sequences overprinted by a protracted history of deformation, metamorphism, and plutonism. Economically significant gold prospects are specifically sited at structural culminations characterized by polyphase folding. Based on garnet–biotite geothermometry on the stable prograde metamorphic assemblage of enveloping metapelites, peak metamorphic conditions are approximated to be 570 °C and 4 kbar (1 kbar = 100 MPa). Diagnostic prograde mineralogy reveals that two facies of silicate iron formation are represented at the five gold occurrences investigated: (1) amphibolitic iron formation (AIF), characterized by quartz + grunerite + hornblende + pyrrhotite ± garnet ± graphite + ilmenite, and (2) pelitic iron formation (PIF), consisting of quartz + biotite + garnet + ilmenite ± grunerite ± hornblende. Textures reveal that grunerite crystallization preceded hornblende and garnet. Within AIF, banded pyrrhotite is in textural equilibrium with prograde metamorphic minerals. Retrograde hornblende, garnet, zoisite, apatite, carbonate, ferroactinolite, and gold-bearing sulphide minerals replace the prograde mineral assemblages on the margins of quartz veins that intensify at AIF fold hinges.It is hypothesized that the iron-formation-hosted gold deposits of the Slave Province are a result of multistage processes. Gold concentrated at high background levels within pyrrhotite-bearing AIF was remobilized during fluid migration into brittle AIF fold hinges in subsequent metamorphic and deformational events. Metamorphic fluid, ponded in fractured AIF hinge domains, caused retrogressive replacement, quartz veining, and gold-bearing sulphide precipitation during waning temperature. Although the mineralized hinge zones commonly display evidence of late chloritization, this alteration did not further affect gold distribution. The gold precipitated with destabilization of thio complexes due to sulphidation prior to low-temperature hydrothermal activity.


Solid Earth ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 573-598 ◽  
Author(s):  
Ernest Chi Fru ◽  
Stephanos Kilias ◽  
Magnus Ivarsson ◽  
Jayne E. Rattray ◽  
Katerina Gkika ◽  
...  

Abstract. An early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on a basement consisting of andesites in a ∼ 150 m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF) sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ∼ −25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ⋅ nH2O) while crystalline quartz (SiO2) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean–atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.


2021 ◽  
Vol 9 (2) ◽  
pp. 213
Author(s):  
Desmond F. Lascelles ◽  
Ryan J. Lowe

Large blocks and boulders of banded iron formations and massive hematite up to 40 × 27 × 6 m3 and in excess of 10,000 metric tonnes were detached from an outcrop of the Wilgie Mia Formation during the ca 2.20 Ga marine transgression at the base of the Paleoproterozoic Windplain Group and deposited in a broad band on the wave-cut surface 900 to 1200 m to the east. At the same time, sand and shingle were scoured from the sea floor, leaving remnants only on the western side of the Wilgie Mia Formation and on the eastern sides of the boulders. Evidence suggesting that the blocks were detached and transported and the sea floor scoured by a tsunami bore with a height of at least 40 m is provided by the following: (1) the deposition of the blocks indicates transportation by a unidirectional sub-horizontal force, whereas the smaller boulders are randomly oriented; (2) 900–1200 m separates the banded iron formation (BIF) outcrop and the blocks (3) there is an absence of the basal conglomerate between the blocks; (4) the blocks and boulders rest directly on the wave-cut surface of deeply weathered amphibolites; (5) the blocks and boulders are surrounded and overlain by fine-grained sandstone of the Windplain Group.


Sign in / Sign up

Export Citation Format

Share Document