Analysis of the Excitatory and Inhibitory Components of Postsynaptic Currents Recorded in Pyramidal Neurons and Interneurons in the Rat Hippocampus

2005 ◽  
Vol 35 (8) ◽  
pp. 835-843 ◽  
Author(s):  
S. L. Buldakova ◽  
D. B. Tikhonov ◽  
L. G. Magazanik
Life Sciences ◽  
2002 ◽  
Vol 72 (4-5) ◽  
pp. 341-353 ◽  
Author(s):  
Dian-Shi Wang ◽  
Hiroe Inokuchi ◽  
Eiichiro Tanaka ◽  
Takeo Isagai ◽  
Ji-Shuo Li ◽  
...  

2002 ◽  
Vol 22 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Naoki Otani ◽  
Hiroshi Nawashiro ◽  
Shinji Fukui ◽  
Namiko Nomura ◽  
Akiko Yano ◽  
...  

Mitogen-activated protein kinases, which play a crucial role in signal transduction, are activated by phosphorylation in response to a variety of mitogenic signals. In the present study, the authors used Western blot analysis and immunohistochemistry to show that phosphorylated extracellular signal-regulated protein kinase (p-ERK) and c-Jun NH(2)-terminal kinase (p-JNK), but not p38 mitogen-activated protein kinase, significantly increased in both the neurons and astrocytes after traumatic brain injury in the rat hippocampus. Different immunoreactivities of p-ERK and p-JNK were observed in the pyramidal cell layers and dentate hilar cells immediately after traumatic brain injury. Immunoreactivity for p-JNK was uniformly induced but was only transiently induced throughout all pyramidal cell layers. However, strong immunoreactivity for p-ERK was observed in the dentate hilar cells and the damaged CA3 neurons, along with the appearance of pyknotic morphologic changes. In addition, immunoreactivity for p-ERK was seen in astrocytes surrounding dentate and CA3 pyramidal neurons 6 hours after traumatic brain injury. These findings suggest that ERK and JNK but not p38 cascades may be closely involved in signal transduction in the rat hippocampus after traumatic brain injury.


2018 ◽  
Vol 29 (9) ◽  
pp. 3982-3992 ◽  
Author(s):  
Amandine Fernandez ◽  
Camille Dumon ◽  
Damien Guimond ◽  
Roman Tyzio ◽  
Paolo Bonifazi ◽  
...  

Abstract Epidemiological and experimental studies suggest that maternal immune activation (MIA) leads to developmental brain disorders, but whether the pathogenic mechanism impacts neurons already at birth is not known. We now report that MIA abolishes in mice the oxytocin-mediated delivery γ-aminobutyric acid (GABA) shift from depolarizing to hyperpolarizing in CA3 pyramidal neurons, and this is restored by the NKCC1 chloride importer antagonist bumetanide. Furthermore, MIA hippocampal pyramidal neurons at birth have a more exuberant apical arbor organization and increased apical dendritic length than age-matched controls. The frequency of spontaneous glutamatergic postsynaptic currents is also increased in MIA offspring, as well as the pairwise correlation of the synchronized firing of active cells in CA3. These alterations produced by MIA persist, since at P14–15 GABA action remains depolarizing, produces excitatory action, and network activity remains elevated with a higher frequency of spontaneous glutamatergic postsynaptic currents. Therefore, the pathogenic actions of MIA lead to important morphophysiological and network alterations in the hippocampus already at birth.


1998 ◽  
Vol 79 (3) ◽  
pp. 1341-1348 ◽  
Author(s):  
Olivier Caillard ◽  
Heather A. McLean ◽  
Yehezkel Ben-Ari ◽  
Jean-Luc Gaïarsa

Caillard, Olivier, Heather A. McLean, Yehezkel Ben-Ari, and Jean-Luc Gaı̈arsa. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J. Neurophysiol. 79: 1341–1348, 1998. γ-Aminobutyric acid-B(GABAB) receptor-dependent and -independent components of paired-pulse depression (PPD) were investigated in the rat CA3 hippocampal region. Intracellular and whole cell recordings of CA3 pyramidal neurons were performed on hippocampal slices obtained from neonatal (5–7 day old) and adult (27–34 day old) rats. Electrical stimulation in the hilus evoked monosynaptic GABAA postsynaptic currents (eIPSCs) isolated in the presence of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) and d(−)2-amino-5-phosphovaleric acid (d-AP5, 50 μM) with 2(triethylamino)- N-(2,6-dimethylphenyl) acetamine (QX314) filled electrodes. In adult CA3 pyramidal neurons, when a pair of identical stimuli was applied at interstimulus intervals (ISIs) ranging from 50 to 1,500 ms the amplitude of the second eIPSC was depressed when compared with the first eIPSC. This paired-pulse depression (PPD) was partially blockedb y  P - 3 - a m i n o p r o p y l - P - d i e t h o x y m e t h y l  p h o s p h o r i c  a c i d(CGP35348, 0.5 mM), a selective GABAB receptor antagonist. In neonates, PPD was restricted to ISIs shorter than 200 ms and was not affected by CGP35348. The GABAB receptor agonist baclofen reduced the amplitude of eIPSCs in a dose-dependent manner with the same efficiency in both adults and neonates. Increasing the probability of transmitter release with high Ca2+ (4 mM)/low Mg2+ (0.3 mM) external solution revealed PPD in neonatal CA3 pyramidal neurons that was 1) partially prevented by CGP35348, 2) independent of the membrane holding potential of the recorded cell, and 3) not resulting from a change in the reversal potential of GABAA eIPSCs. In adults the GABA uptake blocker tiagabine (20 μM) increased the duration of eIPSCs and the magnitude of GABAB receptor-dependent PPD. In neonates, tiagabine also increased duration of eIPSCs but to a lesser extent than in adult and did not reveal a GABAB receptor-dependent PPD. These results demonstrate that although GABAB receptor-dependent and -independent mechanisms of presynaptic inhibition are present onGABAergic terminals and functional, they do not operate at the level of monosynaptic GABAergic synaptic transmission at early stages of development. Absence of presynaptic autoinhibition of GABA release seems to be due to the small amount of transmitter that can access presynaptic regulatory sites.


2008 ◽  
Vol 436 (3) ◽  
pp. 294-299 ◽  
Author(s):  
Jennifer Coles ◽  
Sowmini K. Oomman ◽  
William M. Henne ◽  
Richard M. Bliss ◽  
Trenton C. Hoffman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document