Comparison of the Tripartite Organization of Synaptic Terminals in Intraocular Septal Transplants and in the Septal Area of the Brain

2020 ◽  
Vol 51 (1) ◽  
pp. 59-64
Author(s):  
Z. N. Zhuravleva
1973 ◽  
Vol 21 (4) ◽  
pp. 333-348 ◽  
Author(s):  
FLOYD E. BLOOM

Cytochemical methods for the localization of central catecholamine-containing synaptic terminals have been developed from an extensive foundation of biochemical work and from extrapolation of results on the peripheral sympathetic nervous system. Direct localization of catecholamines in central nerve terminals in some parts of the brain can now be obtained by fixation with permanganates. More broadly applicable, but less direct localizing methods depend upon selective accumulation of tritiated catecholamines for autoradiography or the accumulation of reactive catecholamine congeners which act as markers with conventional fixation. The pattern of acute degenerative changes which result after treatment with 6-hydroxydopamine can also be used to provide an indirect localization of the terminals which had stored catecholamines. When the results of each of the methods are combined, the present techniques indicate that catecholamine-containing terminals in the brain can be identified more confidently than any other system of neurotransmitter substances. Nevertheless, there is considerable need for future cytochemical innovation.


1990 ◽  
Vol 68 (5) ◽  
pp. 1793-1798 ◽  
Author(s):  
M. F. Wilkinson ◽  
N. W. Kasting

Recent evidence has suggested that the endogenous antipyretic arginine vasopressin (AVP) may participate in drug-induced antipyresis. This study sought to further those investigations by comparing the effects of two other antipyretic drugs, sodium salicylate and acetaminophen, administered intraperitoneally, during AVP V1-receptor blockade within the ventral septal area (VSA) of the rat brain. During endotoxin-evoked fever, V1-receptor blockade within the VSA of the conscious unrestrained rat significantly antagonized the antipyretic effects of salicylate. The effects of the V1-antagonist on salicylate-induced antipyresis were dose related. In contrast, the antipyresis elicited by acetaminophen was unaffected by VSA V1-antagonist pretreatment. Neither saline nor the V1-antagonist microinjected into the VSA of febrile or nonfebrile rats had any significant effects on the normal progression of endotoxin fever or normal core temperature, respectively. These data suggest that the mechanism of action of salicylate-induced antipyresis includes activation of AVP V1-type receptors within the VSA, as has been shown for indomethacin. However, the lack of effect of the V1-antagonist on antipyresis induced by acetaminophen indicates that not all antipyretic drugs act through the same mechanism in the brain.


2011 ◽  
Vol 2 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Merina Varghese ◽  
Wei Zhao ◽  
Jun Wang ◽  
Alice Cheng ◽  
Xianjuan Qian ◽  
...  

AbstractAlzheimer’s disease (AD) is an age-related dementia, with the pathological hallmarks of neuritic plaques and neurofibrillary tangles, brain atrophy and loss of synaptic terminals. Dysfunctional mitochondrial bioenergetics is implicated as a contributing factor to the cognitive decline observed in AD. We hypothesized that, in the presence of the AD neurotoxic peptide beta-amyloid, mitochondrial respiration is impaired early in synaptic terminals, which are vital to cognitive performance, preferentially in cognitive centers of the brain. We compared oxygen consumption in synaptosomal and perikaryal mitochondria prepared from the cerebral cortex and cerebellum of wild type (WT) and AD transgenic Tg2576 mice. Compared to WT mice, Tg2576 mice showed decreased mitochondrial respiration in the cerebral cortex specifically in synaptosomal fraction, while the perikaryal mitochondria were unaffected. Neither mitochondrial fraction was affected in the cerebellum of Tg2576 mice as compared to WT. The occurrence of a bioenergetic defect in synaptic terminals of mice overexpressing mutant beta-amyloid, in particular in an area of the brain important to cognition, points to an early role of mitochondrial defects in the onset of cognitive deficits in AD.


Author(s):  
Peggy Mason

The nervous system is made up of neurons and glia that derive from neuroectoderm. Since neurons are terminally differentiated and do not divide, primary intracranial tumors do not arise from mature neurons. Tumors outside the nervous system may metastasize inside the brain or may release a substance that negatively affects brain function, termed paraneoplastic disease. Neurons receive information through synaptic inputs onto dendrites and soma and send information to other cells via a synaptic terminal. Most neurons send information to faraway locations and for this, an axon that connects the soma to synaptic terminals is required. Glial cells wrap axons in myelin, which speeds up information transfer. Axonal transport is necessary to maintain neuronal function and health across the long distances separating synaptic terminals and somata. A common mechanism of neurodegeneration arises from impairments in axonal transport that lead to protein aggregation and neuronal death.


Author(s):  
M. A. Casey

In studying the circuitry of a given region of the brain, some knowledge of the density of synaptic terminals is useful. Such data is especially valuable when studying the brain under pathological or experimental conditions. The methods outlined in this paper have been used to detect axosomatic synaptic terminal loss in the aging rat brain, but they would be applicable to other experimental paradigms.The methods in the present paper have been described elsewhere, and were recently used in our study of the lateral superior olivary nucleus (LSO), a well-characterized cell group in the rat superior olivary complex, and a key component of the rat lower auditory pathway. Virtually all synaptic terminals ending on the cell bodies of LSO principal cells originate in the medial nucleus of the trapezoid body (MTB), which undergoes a significant loss of neurons with age in rats. Thus, we wanted to determine whether loss of MTB cells resulted in a significant loss of axosomatic terminals in the LSO.


1987 ◽  
Vol 65 (6) ◽  
pp. 1333-1338 ◽  
Author(s):  
A. M. Naylor ◽  
K. E. Cooper ◽  
W. L. Veale

Vasopressin administered into the ventral septum exerts a dose-related antipyresis. This site of action is similar in a number of species. The fever-reducing properties of vasopressin are both site and neuropeptide specific. Evidence supporting a role for endogenous vasopressin in fever suppression is the demonstration that the release of the peptide from the ventral septal area is altered during fever: the amount released correlates negatively with febrile changes in body temperature. In addition, changes in the concentration of vasopressin in the septum and amygdala have been demonstrated immunocytochemically during fever: an activation of vasopressinergic neurons occurs which is similar to that observed in pregnant animals at term when fever is absent. Specific antibodies directed against vasopressin or specific vasopressin antagonist analogues (e.g., d(CH2)5Tyr(Me)AVP) enhanced the febrile response to a pyrogen challenge when injected into the ventral septum. The same antagonist also can antagonize the antipyretic effect of exogenously administered vasopressin. The use of relatively specific antagonists and agonists of vasopressin, directed against the V1 and V2 subtypes of the peripheral vasopressin receptor, suggests that the central receptor responsible for the antipyretic effect of vasopressin may resemble the V1 subtype. Recent experiments using electrophysiological techniques have demonstrated the existence of thermoresponsive units in the ventral septal area whose activity may be altered by vasopressin which is possibly derived from the paraventricular nucleus and bed nucleus of the stria terminalis. Electrical stimulation of one of these cell groups in the paraventricular nucleus can reduce the fever evoked by systemic administration of bacterial pyrogen in the rabbit. Collectively, these data strongly support the hypothesis that a system of endogenous antipyresis involving vasopressin exists in the brain. There also may exist another antipyretic system in the brain involving α-melanotropin. This peptide is antipyretic when injected into the dorsal septum and concentrations of α-melanotropin are altered in this area of the brain during fever. Further, passive immunoneutralization using antiserum specific to α-melanotropin results in prolonged fever. A possible connection between the two systems has not yet been investigated. However, in future studies the mechanisms and significance of such a system will be investigated further.


2020 ◽  
Author(s):  
Charles Ducrot ◽  
Marie-Josée Bourque ◽  
Constantin V. L. Delmas ◽  
Anne-Sophie Racine ◽  
Dainelys Guadarrama Bello ◽  
...  

ABSTRACTChemical neurotransmission in the brain typically occurs through synapses, which are structurally and functionally defined as sites of close apposition between an axon terminal and a postsynaptic domain. Ultrastructural examinations of axon terminals established by monoamine neurons in the brain often failed to identify a similar tight pre- and postsynaptic coupling, giving rise to the concept of “diffuse” or “volume” transmission. Whether this results from intrinsic properties of such modulatory neurons remains undefined. Using an efficient co-culture model, we find that dopaminergic neurons establish an axonal arbor that is distinctive compared to glutamatergic or GABAergic neurons in both size and propensity of terminals to avoid direct contact with target neurons. Furthermore, while most dopaminergic varicosities express key proteins involved in exocytosis such as synaptotagmin 1, only ~20% of these are synaptic. The active zone protein bassoon was found to be enriched in a subset of dopaminergic terminals that are in proximity to a target cell. Irrespective of their structure, a majority of dopaminergic terminals were found to be active. Finally, we found that the presynaptic protein Nrxn-1αSS4- and the postsynaptic protein NL-1AB, two major components involved in excitatory synapse formation, play a critical role in the formation of synapses by dopamine neurons. Taken together, our findings support the idea that dopamine neurons in the brain are endowed with a distinctive developmental program that leads them to adopt a fundamentally different mode of connectivity, compared to glutamatergic and GABAergic neurons involved in fast point-to-point signaling.SIGNIFICANCE STATEMENTMidbrain dopamine (DA) neurons regulate circuits controlling movement, motivation, and learning. The axonal connectivity of DA neurons is intriguing due to its hyperdense nature, with a particularly large number of release sites, most of which not adopting a classical synaptic structure. In this study, we provide new evidence highlighting the unique ability of DA neurons to establish a large and heterogeneous axonal arbor with terminals that, in striking contrast with glutamate and GABA neurons, actively avoid contact with the target cells. The majority of synaptic and non-synaptic terminals express proteins for exocytosis and are active. Finally, our finding suggests that, NL-1A+B and Nrxn-1αSS4-, play a critical role in the formation of synapses by DA neurons.


1992 ◽  
Vol 70 (5) ◽  
pp. 786-790 ◽  
Author(s):  
Quentin J. Pittman ◽  
Marshall F. Wilkinson

Arginine vasopressin (AVP) is a centrally synthesized nonapeptide that exerts classical endocrine effects as well as a host of centrally mediated actions. A strong case can be argued in support of a neurotransmitter–neuromodulator role for AVP. Acting within the central nervous system (CNS), AVP has been demonstrated to be involved in the modulation of febrile body temperature. Because AVP acts to reduce pyrogen-induced fevers, but not normal body temperature, its actions are deemed to be antipyretic. However, to demonstrate an endogenous antipyretic function, AVP must be shown to be active during conditions where fever is naturally suppressed. This review will focus on five such conditions where the absence of pyrogen-induced fever can be linked to the endogenous activity of AVP within the brain. In the neonatal rat pup, the use of specific antagonists to the AVP receptor has revealed a role for CNS AVP in the absence of fever following peripheral injections of bacterial endotoxin. These results may help to explain a similar lack of fever in other newborn species. In parturient animals a reduced or absent febrile response has been linked to the increased presence of AVP within the septal area of the brain. The combined use of AVP receptor antagonism as well as immunohistochemistry has shown enhanced AVP activity within the ventral septal area of the rat and guinea pig brain during tolerance to intravenous pyrogens. These results suggest that the mechanism of fever suppression following repeated systemic injections of bacterial pyrogen includes centrally acting AVP. Recent observations from our laboratory have revealed a suppression of fever during the rising phase of arterial blood pressure in the one-kidney, one-clip model of hypertension. The normal febrile response to prostaglandin E1 can be restored in this instance by blockade of ventral septal AVP receptors. A similar situation of lack of response to pyrogens occurs in hypotensive animals in which pressor mechanisms are activated to restore blood pressure to normal. In this, and the previous four examples, centrally acting AVP has been linked to the natural suppression of pyrogen-induced fevers. Using these models of endogenous antipyresis we will continue to investigate this phenomenon to assess the benefits to the organism as well as to examine other nonthermal host defence responses.Key words: fever, antipyretic, pyrogen, host defence, vasopressin.


Sign in / Sign up

Export Citation Format

Share Document