Organic Matter Added to Bareroot Nursery Beds Influences Soil Properties and Morphology of Fraxinus pennsylvanica and Quercus rubra Seedlings

New Forests ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Anthony S. Davis ◽  
Douglass F. Jacobs ◽  
Kevyn E. Wightman ◽  
Zonda K. D. Birge
2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Johann G. Zaller ◽  
Maureen Weber ◽  
Michael Maderthaner ◽  
Edith Gruber ◽  
Eszter Takács ◽  
...  

Abstract Background Glyphosate-based herbicides (GBHs) are among the most often used pesticides. The hundreds of GBHs used worldwide consist of the active ingredient (AI) glyphosate in form of different salts, possibly other AIs, and various mostly undisclosed co-formulants. Pesticide risk assessments are commonly performed using single AIs or GBHs at standard soil conditions without vegetation. In a greenhouse experiment, we established a weed population with common amaranth (Amaranthus retroflexus) to examine the effects of three GBHs (Roundup LB Plus, Roundup PowerFlex, Touchdown Quattro) and their corresponding AIs (salts of glyphosate isopropylammonium, potassium, diammonium) on the activity and physiological biomarkers (glutathione S-transferase, GST; acetylcholine esterase, AChE) of an ecologically relevant earthworm species (Lumbricus terrestris). GBHs and AIs were applied at recommended doses; hand weeding served as control. Experiments were established with two soil types differing in organic matter content (SOM; 3.0% vs. 4.1%) and other properties. Results Earthworm activity (casting and movement activity) decreased after application of glyphosate formulations or active ingredients compared to hand weeding. We found no consistent pattern that formulations had either higher or lower effects on earthworm activity than their active ingredients; rather, differences were substance-specific. Earthworm activity was little affected by soil organic matter levels. Biomarkers remained unaffected by weed control types; GST but not AChE was decreased under high SOM. Water infiltration after a simulated heavy rainfall was interactively affected by weed control types and SOM. Leachate amount was higher after application of formulations than active ingredients and was higher under low SOM. Glyphosate concentrations in soil and leachate were strongly affected by application of formulations or active ingredients and varied with SOM (significant weed control type x SOM interaction). Conclusions We found that both commercial formulations and pure active ingredients can influence earthworms with consequences on important soil functions. Glyphosate products showed increased, reduced or similar effects than pure glyphosate on particular soil functions; soil properties can substantially alter this. Especially at lower SOM, heavy rainfalls could lead to more glyphosate leaching into water bodies. A full disclosure of co-formulants would be necessary to further decipher their specific contributions to these inconsistent effects.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


Soil Research ◽  
1992 ◽  
Vol 30 (2) ◽  
pp. 119 ◽  
Author(s):  
RL Aitken

The objectives of this study were to examine (1) interrelationships between various forms of extractable A1 and selected soil properties, (2) the contribution of extractable A1 to pH buffer capacity, and (3) investigate the use of extractable A1 to predict lime requirement. Aluminium was extracted from each of 60 Queensland soils with a range of chloride salts: 1 M KCl (AlK), 0.5 M CuCl2 (AlCu), 0.33 M LaCl3 (AlLa) and 0.01 M CaCl2 (AlCa). The amounts of A1 extracted were in the order AlCu > AlLa > Alk > AlCa. Little or no A1 was extracted by KC1 or Lac13 in soils with pHw values greater than 5.5 , whereas CuCl2 extracted some A1 irrespective of soil pH. The greater amounts of A1 extracted by CuCl2 were attributed mainly to A1 from organic matter, even though all of the soils were mineral soils (organic carbon 54.7%). Both AlCu and AlLa, were significantly (P < 0.001) correlated with organic carbon, whereas none of the extractable A1 measures was correlated with clay content. AlK and A~L, were poorly correlated to pH buffer capacity. The linear relationship between AlCu and pH buffer capacity (r2 = 0.49) obtained in this study supports the view of previous researchers that the hydrolysis of A1 adsorbed by organic matter is a source of pH buffering in soils. However, the change in CEC with pH accounted for 76% of the variation in pH buffer capacity, indicating that other mechanisms such as deprotonation of organic groups and variable charge minerals are also involved in pH buffering. The ability of CuCl2 and LaCl3extractable Al to estimate lime requirement depended on the target pH. The results suggest that lime requirements based on neutralization of AlLa would be sufficient to raise pHw to around 5.5, whereas requirements based on neutralization of AlCu substantially overestimated the actual lime requirement to pHw 5.5, but gave a reasonable estimation of the lime requirement to pHw 6 5.


2020 ◽  
Vol 295 ◽  
pp. 106882 ◽  
Author(s):  
Jennifer Cooper ◽  
Isabel Greenberg ◽  
Bernard Ludwig ◽  
Laura Hippich ◽  
Daniel Fischer ◽  
...  

2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


Sign in / Sign up

Export Citation Format

Share Document