Root morphology and physiology responses of two subtropical tree species to NH4+-N and NO3−-N deposition in phosphorus-barren soil

New Forests ◽  
2021 ◽  
Author(s):  
Rui Zhang ◽  
Zhongyi Yang ◽  
Yunpeng Wang ◽  
Jiayi Wang ◽  
Yi Wang ◽  
...  
2020 ◽  
Author(s):  
Rui Zhang ◽  
Yi Wang ◽  
Zhichun Zhou

Abstract Background: Both NH4+ and NO3– are capable of greatly influencing plants’ growth and biomass. However, the belowground responses of subtropical trees to either NH4+ or NO3– deposition remain poorly understood. Here, we discuss how these two forms of N deposition can affect root development, and experimentally analyzed how they could impact nitrogen and phosphorus absorption in two types (broadleaved with a fibrous root system vs. conifer with a tap root system) of subtropical tree species. Results: In a greenhouse in southern China, 1-year-old S. superba and P. massoniana seedlings grown on P-limited and P-normal soil were treated with NaNO3 and NH4Cl solutions of 0, 80, and 200 kg N ha–1 year–1, corresponding to the control, N80, and N200 groups, respectively. Root phenotype characteristics and metabolism ability were measured after 8 months of growth. The results showed that the root morphology and physiology variables differed significantly between the two species under different N and P treatments. Although S. superba had a larger quantity of roots than P. massoniana, both its root growth rate and root absorption were respectively lower and weaker. N addition differentially affected root growth and activity as follows: (1) NO3–-N80 and NH4+-N80 increased root growth and activity of the two species, but NH4+-N80 led to thicker roots in S. superba; (2) NO3–-N200 and NH4+-N200 had inhibitory effects on the roots of P. massoniana, for which NH4+-N200 led to thinner and longer roots and even the death of some roots; and (3) NH4+-N could promote metabolic activity in thicker roots (> 1.5 mm) and the NO3–-N was found to stimulate activity in thinner roots (0.5–1.5 mm) in the fibrous root system having a larger quantity of roots, namely S. superba. By contrast, NO3–-N and NH4+-N had an opposite influence upon functioning in the tap root system with a slender root, namely P. massoniana. Conclusion: We conclude P. massoniana has a much higher root absorption efficiency; however, nitrogen deposition is more beneficial to the root growth of S. superba.


2017 ◽  
Vol 47 (8) ◽  
pp. 997-1009 ◽  
Author(s):  
Katherine F. Crowley ◽  
Gary M. Lovett

As tree species composition in forests of the northeastern United States changes due to invasive forest pests, climate change, or other stressors, the extent to which forests will retain or release N from atmospheric deposition remains uncertain. We used a species-specific, dynamic forest ecosystem model (Spe-CN) to investigate how nitrate (NO3–) leaching may vary among stands dominated by different species, receiving varied atmospheric N inputs, or undergoing species change due to an invasive forest pest (emerald ash borer; EAB). In model simulations, NO3– leaching varied widely among stands dominated by 12 northeastern North American tree species. Nitrate leaching increased with N deposition or forest age, generally with greater magnitude for deciduous (except red oak) than coniferous species. Species with lowest baseline leaching rates (e.g., red spruce, eastern hemlock, red oak) showed threshold responses to N deposition. EAB effects on leaching depended on the species replacing white ash: after 100 years, predicted leaching increased 73% if sugar maple replaced ash but decreased 55% if red oak replaced ash. This analysis suggests that the effects of tree species change on NO3– leaching over time may be large and variable and should be incorporated into predictions of effects of N deposition on leaching from forested landscapes.


2018 ◽  
Vol 425 (1-2) ◽  
pp. 189-200 ◽  
Author(s):  
Wenna Wang ◽  
Yan Wang ◽  
Günter Hoch ◽  
Zhengquan Wang ◽  
Jiacun Gu

Plant Biology ◽  
2002 ◽  
Vol 4 (4) ◽  
pp. 515-522 ◽  
Author(s):  
O. De Simone ◽  
E. Müller ◽  
W. J. Junk ◽  
W. Schmidt

2012 ◽  
Vol 9 (2) ◽  
pp. 867-874 ◽  
Author(s):  
K. K. McLauchlan ◽  
J. M. Craine

Abstract. Humans have drastically altered the global nitrogen (N) cycle, and these alterations have begun to affect a variety of ecosystems. In North America, N deposition rates are highest in the central US, yet there are few studies that examine whether N availability has been increasing to different tree species in the forests of the region. To determine the species-specific trajectories of N availability in secondary temperate forests experiencing high N deposition, we measured the N concentrations and composition of stable N isotopes in wood of four tree species from six hardwood forest remnants in northern Indiana, USA. Annual nitrogen deposition rates averaged 5.8 kg ha−1 from 2000 to 2008 in this region. On average, wood δ15N values in Quercus alba have been increasing steadily over the past 100 years. In contrast, wood δ15N values have been declining in three other hardwood species – Acer saccharum, Carya ovata, and Fagus grandifolia – over the same time period. The species-specific trends suggest a change in the partitioning of ammonium and nitrate among species, due to an increase in nitrification rates over time. With no apparent net change in wood δ15N over the past century at the stand level, there is currently little evidence for consistent trends in stand-level N availability over time in the Indiana forests.


Author(s):  
NEIL FJ OTT ◽  
Shaun A. Watmough

Acidic deposition depleted soil base cation pools throughout central Ontario, particularly during the second half of the twentieth century. While sulphur (S) and nitrogen (N) deposition have declined in recent decades, forest harvesting may continue to remove base cations from soils, highlighting the need for reliable soil chemistry forecasts. This study investigated whether differences in soil chemistry among forest stands dominated by different tree species affected predictions using a dynamic biogeochemical model (VSD). Soil base saturation was modelled from 1850–2100 in stands dominated by balsam fir (<i>Abies balsamea</i> (L.) Mill.), eastern hemlock (<i>Tsuga canadensis</i> (L.) Carr.), white pine (<i>Pinus strobus</i> L.), sugar maple (<i>Acer saccharum</i> Marsh.), or yellow birch (<i>Betula alleghaniensis</i> Britt.). Three scenarios that manipulated future atmospheric S and N deposition and forest harvesting (2020–2100) were applied. When future atmospheric S and N deposition remained at 2020 levels and harvesting continued, base saturation increased marginally (2.0–4.5%) in all plots. Further increases in base saturation were minor (~1%) by 2100 when deposition reductions were implemented. When future forest harvesting was excluded, soil base saturation increased 3.4–8.5% from 2020–2100. These results suggest that tree species composition has minimal influence on modelled soil chemistry forecasts in response to changes in acidic deposition, and such models can be broadly applied for regional predictions.


Sign in / Sign up

Export Citation Format

Share Document