Root Morphology and Secretion of two subtropical tree species to NH4+-N and NO3–-N Deposition

2020 ◽  
Author(s):  
Rui Zhang ◽  
Yi Wang ◽  
Zhichun Zhou

Abstract Background: Both NH4+ and NO3– are capable of greatly influencing plants’ growth and biomass. However, the belowground responses of subtropical trees to either NH4+ or NO3– deposition remain poorly understood. Here, we discuss how these two forms of N deposition can affect root development, and experimentally analyzed how they could impact nitrogen and phosphorus absorption in two types (broadleaved with a fibrous root system vs. conifer with a tap root system) of subtropical tree species. Results: In a greenhouse in southern China, 1-year-old S. superba and P. massoniana seedlings grown on P-limited and P-normal soil were treated with NaNO3 and NH4Cl solutions of 0, 80, and 200 kg N ha–1 year–1, corresponding to the control, N80, and N200 groups, respectively. Root phenotype characteristics and metabolism ability were measured after 8 months of growth. The results showed that the root morphology and physiology variables differed significantly between the two species under different N and P treatments. Although S. superba had a larger quantity of roots than P. massoniana, both its root growth rate and root absorption were respectively lower and weaker. N addition differentially affected root growth and activity as follows: (1) NO3–-N80 and NH4+-N80 increased root growth and activity of the two species, but NH4+-N80 led to thicker roots in S. superba; (2) NO3–-N200 and NH4+-N200 had inhibitory effects on the roots of P. massoniana, for which NH4+-N200 led to thinner and longer roots and even the death of some roots; and (3) NH4+-N could promote metabolic activity in thicker roots (> 1.5 mm) and the NO3–-N was found to stimulate activity in thinner roots (0.5–1.5 mm) in the fibrous root system having a larger quantity of roots, namely S. superba. By contrast, NO3–-N and NH4+-N had an opposite influence upon functioning in the tap root system with a slender root, namely P. massoniana. Conclusion: We conclude P. massoniana has a much higher root absorption efficiency; however, nitrogen deposition is more beneficial to the root growth of S. superba.

1975 ◽  
Vol 5 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Hugh E. Wilcox ◽  
Ruth Ganmore-Neumann

Seedlings of Pinusresinosa were grown at root temperatures of 16, 21 and 27 °C, both aseptically and after inoculation with the ectendomycorrhizal fungus BDG-58. Growth after 3 months was significantly influenced by the presence of the fungus at all 3 temperatures. The influence of the fungus on root growth was obscured by the effects of root temperature on morphology. The root system at 16 and at 21 °C possessed many first-order laterals with numerous, well developed second-order branches, but those at 27 °C had only a few, relatively long, unbranched first-order laterals. Although the root systems of infected seedlings were larger, the fungus increased root growth in the same pattern as determined by the temperature.


2001 ◽  
Vol 52 (4) ◽  
pp. 495 ◽  
Author(s):  
V. Dunbabin ◽  
Z. Rengel ◽  
A. Diggle

Little is known about the ability of legume root systems to respond to the heterogeneous supply of nitrate. A split-root nutrient solution experiment was set up to compare the root growth response of 2 lupin species, Lupinus angustifolius L. (dominant tap root and primary lateral system) and L. pilosus Murr. (minor tap root and well-developed lateral root system), to differentially supplied nitrate. These 2 species represent the extremes of the root morphology types present across the lupin germplasm. Nutrient solution containing low (250 M) or high (750 M) nitrate was supplied either uniformly, or split (high and low) between the upper and lower root system. The average growth rate and total root length of L. pilosus was 1.7 times that of L. angustifolius. For both species, the increased proliferation of roots in a high nitrate zone was accompanied by a decrease in root growth in the low nitrate zone, giving approximately the same total growth as the uniform low nitrate treatment. This correlative growth rate response was 15% larger for the first-order branches of L. pilosus than L. angustifolius. While few second-order branches grew for L. angustifolius, the second-order laterals of L. pilosus showed a 2-fold correlative root growth and branching response to the split treatments, with no difference in growth between the uniform high and low nitrate treatments. The second-order laterals thus proliferated in response to the differential supply of nitrate and not the absolute concentration. While the growth rate and branching of the second-order laterals of L. pilosus exhibited a typical correlative response, first-order branching was inhibited in all split treatments, regardless of whether the roots were in the high or low nitrate zone. This response was not seen in L. angustifolius. The difference in the root growth response of the 2 root system types to differentially supplied nitrate suggests a potential in the lupin germplasm for developing a line capable of greater nitrate capture from the soil profile.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2474
Author(s):  
Rondy J. Malik ◽  
James D. Bever

While milkweeds (Asclepias spp.) are important for sustaining biodiversity in marginal ecosystems, CO2 flux may afflict Asclepias species and cause detriment to native communities. Negative CO2-induced effects may be mitigated through mycorrhizal associations. In this study, we sought to determine how mycorrhizae interacts with CO2 to influence Asclepias biomass and root morphology. A broad range of Asclepias species (n = 6) were chosen for this study, including four tap-root species (A. sullivantii, A. syriaca, A. tuberosa, and A. viridis) and two fibrous root species (A. incarnata and A. verticillata). Collectively, the six Asclepias species were manipulated under a 2 × 2 full-factorial design that featured two mycorrhizal levels (−/+ mycorrhizae) and two CO2 levels (ambient and enriched (i.e., 3.5× ambient)). After a duration of 10 months, Asclepias responses were assessed as whole dry weight (i.e., biomass) and relative transportive root. Relative transportive root is the percent difference in the diameter of highest order root (transportive root) versus that of first-order absorptive roots. Results revealed an asymmetrical response, as mycorrhizae increased Asclepias biomass by ~12-fold, while enriched CO2 decreased biomass by about 25%. CO2 did not impact relative transportive roots, but mycorrhizae increased root organ’s response by more than 20%. Interactions with CO2 and mycorrhizae were observed for both biomass and root morphology (i.e., relative transportive root). A gene associated with CO2 fixation (rbcL) revealed that the two fibrous root species formed a phylogenetic clade that was distant from the four tap-root species. The effect of mycorrhizae was most profound in tap-root systems, as mycorrhizae modified the highest order root into tuber-like structures. A strong positive correlation was observed with biomass and relative transportive root. This study elucidates the interplay with roots, mycorrhizae, and CO2, while providing a potential pathway for mycorrhizae to ameliorate CO2 induced effects.


2021 ◽  
Author(s):  
Jayant H. Meshram ◽  
Sunil S. Mahajan ◽  
Dipak Nagrale ◽  
Nandini Gokte-Narkhedkar ◽  
Harish Kumbhalkar

Cotton is an important commercial crop grown in India. It occupies an area of about 12.7 million hectares and is grown both in irrigated as well as rainfed tracts. In such situations, roots are very important organ for plant growth and development, since they act as anchors, providing mechanical support, and chemical extractors for the growing plant. Root length density sets the proportion of water uptake both under wet conditions and dry soils. Cotton plants with efficient root system capture water and nutrients from soil having these features of longer tap root. It is widely accepted that breeding efforts on aboveground traits are not sufficient to the necessary yield advantage. Shifting the emphasis to analyzing the root system would provide an additional means to enhance yield under changing climatic condition. Belowground image analysis studies point to the importance of root system architecture for optimizing roots and rhizosphere dynamics for sustainable cotton production. In this review, we describe the cotton root biological context in which root-environment interactions providing an overview of the root growth morphology species wise, phytohormone action that control root growth, root anatomical significance in drying soils, biotic and abiotic stresses involved in controlling root growth and environmental responses.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 2383-2393 ◽  
Author(s):  
Hui Hui Chai ◽  
Feng Chen ◽  
Shu Jie Zhang ◽  
Ya Dan Li ◽  
Zhi Song Lu ◽  
...  

A multi-chamber petaloid root-growth microfluidic chip was developed for the non-destructive investigation of the effect of different drought stress conditions on the fibrous root system development of a single seedling.


1995 ◽  
Vol 4 (2) ◽  
pp. 139-237 ◽  
Author(s):  
Liisa Pietola

Field experiments were performed in Southern Finland on three soil types: fine sand (1989-1991), clay (1989) and mull (1990-1991). The following soil mechanical treatments were applied to autumn ploughed land: soil loosening by ridge preparation (ridge distance 45 cm), rotary harrowing (to a depth of 20 cm, clay 15 cm), and soil compaction track by track by a tractor weighing 3 Mg (1 or 3 passes, wheel width 33 cm) before seed bed preparation. One plot was untreated. These treatments were set up in April (on clay in May) under moist soil conditions. Sprinkler irrigation (one application of 30 mm) was applied to clay and fine sand when soil moisture in top soil had decreased to around 50% of plant-available water capacity. PVC cylinders (r = 15 cm, h = 60 cm) were fixed in the experimental areas during the growing periods. At harvest, these cylinders were removed for specific analysis of tap and fibrous roots of carrot. Length and width of fibrous roots were quantified by image analysis in the USA. The impacts of soil loosening and partial compaction were determined by measuring soil physical parameters to a depth of 25 cm in mineral soils, and to greater depths in organic soil. Dry bulk densities of the plough layers increased with increasing tractor passes by 8%, 10% and 13% for fine sand, mull and clay soils, respectively. The lowest dry soil bulk density in the plough layer was obtained by rotary harrowing to a depth of 20 cm. Comparison of gamma ray transmission and gravimetric analysis indicated that dry soil bulk density was slightly lower when determined by gravimetric analysis. Increased soil bulk densities were reflected by increased water retention capacity (matric suction ≤ 10 kPa) and greater penetrometer resistance. Relatively similar increases in bulk density increased the penetrometer resistance much less in mull than in fine sand. In contrast, greater bulk densities in the mull soil affected soil air composition adversely by decreasing the O2 content to 10% when the subsoil had high wetness. In other soils, the lowest soil oxygen contents of 16-18% were recorded in early summer (compacted clay) and during periods of vigorous plant growth (fine sand) when soil water contents were high. Even though the highest degree of soil compactness (D) in a plough layer approached 93 (gravimetric) in all soils, only clay soil was compacted to a soil macro-porosity below 10% (pore diameter > 30 μm). Soil compaction promoted crop establishment and early growth as compared with loose soil beds. Optimum soil compactness for carrot yield (D = 82) was observed only in clay field where excess loosening or compaction affected yield quantity adversely at different stages of growth. During biomass accumulation, excessive penetrometer resistances limited tap root growth in compacted fine sand without irrigation. Water applications promoted shoot growth, but did not affect final shoot and tap root yield. Among the three soil types tested in this study, compaction of mull soil had the least effect on carrot growth and external quality. This paper presents evidence that the internal quality of carrots is only slightly affected by changes in soil physical properties, while the adverse effects of soil compaction on carrot external quality (short, deformed and conical tap roots with greater maximum diameters) are clear. Even though compacted clay soil greatly limited the biomass accumulations in the tap root, which had a high crude fibre content, the carotene (10 mg/100 g carrots) and sugar contents (5%) reached acceptable levels. The lowest carotene contents (4 mg/100 g carrots) were observed in loose mull, following a cool late summer in 1990. The effect of irrigation on carotene content varied from one year to another. High sugar and carotene contents appeared to respond to the high below-ground absorption surface. The fibrous root system of carrots, consisting of mostly very fine roots (diameter 0.15 mm), had total lengths of 150 m in loose fine sand at a soil depth of 0-50 cm (rotary harrowed), 200 m and 300 m in fine sand and mull soils subjected to 3 passes by a tractor wheel. The maximum dry weight (60 μg), length (1.2 cm) and surface area (0.05 cm2) of the fibrous root system per soil volume (cm3) were observed in compacted or irrigated soil to a depth of 30 cm, and also in relation to tap root dry weight. This suggests a capacity of carrot plant for high below-ground absorption potential and optimal biochemial maturation of tap root tissue even when surface soils are compacted. This is supported by higher leaf area, as the early shoot growth was promoted by partial soil compaction. Soil compaction affected the soil physical properties and carrot external quality in agreement with previous studies. Carotene and sugar contents appeared to be unaffected or were slightly increased in riper and firmer carrots of compacted soils. This is consistent with the earlier information about the internal quality of carrot which is shown to be highly dependent on genetic factors and developmental stage of carrot. The present study emphasizes the surface area of carrot fibrous root system as a beneficial factor for maintaining high levels of carotene and sugar contents in tap roots after partial soil compaction.


New Forests ◽  
2021 ◽  
Author(s):  
Rui Zhang ◽  
Zhongyi Yang ◽  
Yunpeng Wang ◽  
Jiayi Wang ◽  
Yi Wang ◽  
...  

1996 ◽  
Vol 14 (2) ◽  
pp. 47-49 ◽  
Author(s):  
Thomas E. Marler ◽  
Dwayne Willis

Abstract Carambola (Averrhoa carambola L.), longan (Dimocarpus longan Lour.), and mango (Mangifera indica L.) nursery transplants were produced in copper-treated, air-root-pruning (only carambola and mango), or untreated conventional plastic containers during 1990 and 1991. Copper treatments did not influence root growth of carambola or mango; but increased total root growth during container production, the proportion of roots in the upper half of the root system, and new root growth after transplanting for longan. Air-root-pruning containers increased the proportion of roots in the upper half of the rootball and new root growth of carambola and mango following transplanting. Copper-treated containers for longan and air-root-pruning containers for carambola and mango effectively stopped root extension growth at the container wall-medium interface.


1957 ◽  
Vol 5 (1) ◽  
pp. 103 ◽  
Author(s):  
RL Specht ◽  
P Rayson

This paper describes the nature of the root systems of the most important members of the heath community. Several variations of tap-root and fibrous root systems were observed. Tap-rooted species were either shallow rooting (1–2 ft) or deep rooting (6 or more feet into the clay subsoil). Two variations of deep tap-rooted species were observed. The tap-root of one decays with age; the laterals of the other produce frequent sucker shoots. In all forms of the deep tap-rooted species an extensive lateral root system was developed within the surface 12 in. of soil — the organic A1 horizon; the tap-root and occasional secondary vertical descended, often unbranched, to the subsoil. The fibrous root system may arise from stem bases, rhizomes, tubers, or underground stocks (caudices). With the exception of underground stocks, which had extensive roots in the A2 and A3 to B horizons, the other forms of the fibrous root systems were confined to the A1 horizon. The marked concentration of roots in the organic A1 horizon was illustrated in dry weight–depth curves. Most of the roots in the A2, and A1 horizons arose from the caudex of Xanthorrhoea australis R.Br.; the remainder were vertical roots which passed directly into the subsoil from the deep-rooted species. About 70 per cent of the species recorded in the heath had morphological characteristics which enabled them to survive a fire and sprout from perennating buds buried under the surface of the ground. Thus, although the aerial organs of the heath were destroyed by fire, the root systems provided a reserve of food and nutrients for the regenerating heath. The dry weight of the root systems was therefore scarcely influenced by fire and thereafter steadily increased in the organic A1 horizon as the stand aged. The presence of root nodules on species of Leguminosae and Casuarinaoeae as well as of haustoria on Exocarpos sparteus R.Br. and Euphrasia collina R.Br. Is recorded.


Sign in / Sign up

Export Citation Format

Share Document