Hybrid Harmony Search Combined with Stochastic Local Search for Feature Selection

2015 ◽  
Vol 44 (1) ◽  
pp. 199-220 ◽  
Author(s):  
Messaouda Nekkaa ◽  
Dalila Boughaci
2021 ◽  
Vol 17 (1) ◽  
pp. 1-10
Author(s):  
Hayder Al-Behadili

In today’s world, the data generated by many applications are increasing drastically, and finding an optimal subset of features from the data has become a crucial task. The main objective of this review is to analyze and comprehend different stochastic local search algorithms to find an optimal feature subset. Simulated annealing, tabu search, genetic programming, genetic algorithm, particle swarm optimization, artificial bee colony, grey wolf optimization, and bat algorithm, which have been used in feature selection, are discussed. This review also highlights the filter and wrapper approaches for feature selection. Furthermore, this review highlights the main components of stochastic local search algorithms, categorizes these algorithms in accordance with the type, and discusses the promising research directions for such algorithms in future research of feature selection.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4821
Author(s):  
Rami Ahmad ◽  
Raniyah Wazirali ◽  
Qusay Bsoul ◽  
Tarik Abu-Ain ◽  
Waleed Abu-Ain

Wireless Sensor Networks (WSNs) continue to face two major challenges: energy and security. As a consequence, one of the WSN-related security tasks is to protect them from Denial of Service (DoS) and Distributed DoS (DDoS) attacks. Machine learning-based systems are the only viable option for these types of attacks, as traditional packet deep scan systems depend on open field inspection in transport layer security packets and the open field encryption trend. Moreover, network data traffic will become more complex due to increases in the amount of data transmitted between WSN nodes as a result of increasing usage in the future. Therefore, there is a need to use feature selection techniques with machine learning in order to determine which data in the DoS detection process are most important. This paper examined techniques for improving DoS anomalies detection along with power reservation in WSNs to balance them. A new clustering technique was introduced, called the CH_Rotations algorithm, to improve anomaly detection efficiency over a WSN’s lifetime. Furthermore, the use of feature selection techniques with machine learning algorithms in examining WSN node traffic and the effect of these techniques on the lifetime of WSNs was evaluated. The evaluation results showed that the Water Cycle (WC) feature selection displayed the best average performance accuracy of 2%, 5%, 3%, and 3% greater than Particle Swarm Optimization (PSO), Simulated Annealing (SA), Harmony Search (HS), and Genetic Algorithm (GA), respectively. Moreover, the WC with Decision Tree (DT) classifier showed 100% accuracy with only one feature. In addition, the CH_Rotations algorithm improved network lifetime by 30% compared to the standard LEACH protocol. Network lifetime using the WC + DT technique was reduced by 5% compared to other WC + DT-free scenarios.


2018 ◽  
Vol 89 ◽  
pp. 68-81 ◽  
Author(s):  
Túlio A.M. Toffolo ◽  
Jan Christiaens ◽  
Sam Van Malderen ◽  
Tony Wauters ◽  
Greet Vanden Berghe

Sign in / Sign up

Export Citation Format

Share Document