Site classification of Pondicherry using shear-wave velocity and horizontal-to-vertical spectral ratio

2013 ◽  
Vol 69 (1) ◽  
pp. 953-964 ◽  
Author(s):  
S. Trupti ◽  
K. Goverdhan ◽  
K. N. S. S. S. Srinivas ◽  
P. Prabhakar Prasad ◽  
T. Seshunarayana
2020 ◽  
Vol 223 (2) ◽  
pp. 1355-1377
Author(s):  
Farhad Sedaghati ◽  
Sahar Rahpeyma ◽  
Anooshiravan Ansari ◽  
Shahram Pezeshk ◽  
Mehdi Zare ◽  
...  

SUMMARY Tien Shan of central Asia is known as one of the world's largest, youngest and most active intracontinental orogens. In this study, we implemented the horizontal-to-vertical spectral ratio (HVSR) technique as a widely used first-order approximation of the site effect parameters (i.e. fundamental frequency and site amplification). A set of data including 2119 strong-motion recordings from 468 earthquakes with hypocentral distances up to 500 km and small to moderate moment magnitudes ($ {M_{\rm{w}}}\sim $3.0–5.5) recorded by 24 broad-band stations from five different networks, located in Afghanistan, Tajikistan and Kyrgyzstan was deployed to investigate site-specific characteristics. We fitted a Gaussian-shape pulse function to evaluate fundamental frequencies and site amplifications. The HVSRs analysis revealed that although the majority of the stations (16 out of 24) show flat amplification functions, there are few stations with single sharp amplification functions. Then, we classified the stations based on the predominant frequency. Furthermore, we approximated the time-averaged shear wave velocity in the uppermost 30 m (${V_{{\rm{S}}30}}$) using the fundamental frequency and its corresponding amplitude. Moreover, we compared the HVSRs obtained from P waves, S waves, coda and pre-event noise. All peak frequencies including the fundamental frequency estimated from different seismic phases are in good agreement; whereas generally, the amplitude of the P-wave window is the lowest, the amplitudes of the S wave and noise windows are similar to the whole record and the amplitudes of early and late coda windows are the highest. We also observed that the HVSRs of noise using a 5 s window may have anomalous high amplitudes and peaks. These anomalous high amplitudes and peaks in the noise HVSRs indicate the existence of some unnatural sources or artefacts such as traffic and wind with specific resonance frequencies, suggesting 5 s ambient noise window is insufficient to capture site characteristics. Finally, to assess the reliability of the determined geotechnical results, we implemented a blind theoretical HVSR inversion to obtain representative shear wave velocity profiles as well as ${V_{{\rm{S}}30}}$ along with associated uncertainties for stations characterized by a single-peak HVSR curve using a Bayesian statistical framework.


Geo-Risk 2017 ◽  
2017 ◽  
Author(s):  
Wenxin Liu ◽  
Chaofeng Wang ◽  
Qiushi Chen ◽  
Guoxing Chen ◽  
C. Hsein Juang

2014 ◽  
Vol 580-583 ◽  
pp. 264-267
Author(s):  
Sheng Jie Di ◽  
Zhi Gang Shan ◽  
Xue Yong Xu

Characterization of the shear wave velocity of soils is an integral component of various seismic analysis, including site classification, hazard analysis, site response analysis, and soil-structure interaction. Shear wave velocity at offshore sites of the coastal regions can be measured by the suspension logging method according to the economic applicability. The study presents some methods for estimating the shear wave velocity profiles in the absence of site-specific shear wave velocity data. By applying generalized regression neural network (GRNN) for the estimation of in-situ shear wave velocity, it shows good performances. Therefore, this estimation method is worthy of being recommended in the later engineering practice.


2001 ◽  
Vol 17 (1) ◽  
pp. 65-87 ◽  
Author(s):  
Adrián Rodríguez-Marek ◽  
Jonathan D. Bray ◽  
Norman A. Abrahamson

A simplified empirically based seismic site response evaluation procedure that includes measures of the dynamic stiffness of the surficial materials and the depth to bedrock as primary parameters is introduced. This geotechnical site classification scheme provides an alternative to geologic-based and shear wave velocity-based site classification schemes. The proposed scheme is used to analyze the ground motion data from the 1989 Loma Prieta and 1994 Northridge earthquakes. Period-dependent and intensity-dependent spectral acceleration amplification factors for different site conditions are presented. The proposed scheme results in a significant reduction in standard error when compared with a simpler “rock vs. soil” classification system. Moreover, results show that sites previously grouped as “rock” should be subdivided as competent rock sites and weathered soft rock/shallow stiff soil sites to reduce uncertainty in defining site-dependent ground motions. Results also show that soil depth is an important parameter in estimating seismic site response. The standard errors resulting from the proposed site classification system are comparable with those obtained using the more elaborate code-based average shear-wave velocity classification system.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Dalia Munaff Naji ◽  
Muge K. Akin ◽  
Ali Firat Cabalar

Assessment of seismic site classification (SSC) using either the average shear wave velocity (VS30) or the average SPT-N values (N30) for upper 30 m in soils is the simplest method to carry out various studies including site response and soil-structure interactions. Either the VS30- or the N30-based SSC maps designed according to the National Earthquake Hazards Reduction Program (NEHRP) classification system are effectively used to predict possible locations for future seismic events. The main goal of this study is to generate maps using the Geographic Information System (GIS) for the SSC in Kahramanmaras city, influenced by both East Anatolian Fault and Dead Sea Fault Zones, using both VS30 and N30 values. The study also presents a series of GIS maps produced using the shear wave velocity (VS) and SPT-N values at the depths of 5 m, 10 m, 15 m, 20 m, and 25 m. Furthermore, the study estimates the bed rock level and generates the SSC maps for the average VS values through overburden soils by using the NEHRP system. The VS30 maps categorize the study area mainly under class C and limited number of areas under classes B and D, whereas the N30 maps classify the study area mainly under class D. Both maps indicate that the soil classes in the study area are different to a high extent. Eventually, the GIS maps complied for the purpose of urban development may be utilized effectively by engineers in the field.


2021 ◽  
Vol 325 ◽  
pp. 01009
Author(s):  
Skolastika Novita Widyadarsana ◽  
Eddy Hartantyo

Many landslides occur in Samigaluh District, Kulon Progo Regency, Yogyakarta, Indonesia. However, no research discusses landslides that often occur on the main road connecting the city of Yogyakarta and various tourist resorts in Samigaluh. This study aims at determining the soil vulnerability and lithology model at that main road as a contribution to landslide mitigation planning. This lithology model is based on shear wave velocity (Vs) and layer thickness derived by microtremor datasets. The data were processed by the inversion of the Horizontal to Vertical Spectral Ratio (HVSR) technique of the ellipticity curve method. The result of the study shows that the first layer is associated with topsoil which has Vs of 263 m/s, the second layer is clay which has Vs of 607 m/s, the third layer consists of clay, breccia, and pumice which has Vs of 1119 m/s, and the fourth layer is andesite bedrock which has Vs of 1721 m/s. Andesite is impermeable to water and can become a slip field for landslides. Clay, breccias, and pumice can absorb water so that their weight increases when it rains. When they are on an impermeable rock on a certain slope, a landslide occurs.


2016 ◽  
Vol 2 (4) ◽  
pp. 113-122 ◽  
Author(s):  
Ali Komak Panah ◽  
Aylin Nouri

Recent code provisions for building and other structures (1994 and 1997 NEHRP provisions, 1997 UBC) have adopted new site classification. The new site classification system is based on average shear wave velocity to a depth of 30 m. when the shear wave velocity is not available; other soil properties such as undrained shear strength can be used. The study of propagation damages in various earthquakes illustrates the importance of the site effect on the ground seismic characteristics. From the point of the earthquake engineering view, the most important characteristics of the strong ground motion are amplitude, frequency content and duration. All of these properties have a significant effect on earthquake damage. The behavior of soils under cyclic loading is basically nonlinear and hysteretic. Ground response analysis is used to predict the movements of the ground and develop a design response spectrum in order to determine the dynamic stresses and strains and earthquake forces. The profile was studied by using various methods of soil response analysis and finally, the results were examined. In this paper, soil responses were examined by NERA, EERA software and the results compared with each other. Eventually, we concluded that the values obtained from the EERA are more than the value obtained from the NEERA software.


Sign in / Sign up

Export Citation Format

Share Document