scholarly journals The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains

2020 ◽  
Vol 104 (2) ◽  
pp. 1239-1258 ◽  
Author(s):  
Xiaoyan Wang ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Lihua Xiong ◽  
Pengfei Shi ◽  
...  
2013 ◽  
Vol 7 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
M. Zemp ◽  
E. Thibert ◽  
M. Huss ◽  
D. Stumm ◽  
C. Rolstad Denby ◽  
...  

Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and statistical toolsets for assessment of random and systematic errors, as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme, drawing on an analysis that comprises over 50 recording periods for a dozen glaciers, and we make recommendations to investigators and users of glacier mass balance data. Reanalysing glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality, including reliable uncertainty estimates.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 582
Author(s):  
Min Xu ◽  
Haidong Han ◽  
Shichang Kang

The authors wish to make the following corrections to this paper [...]


2014 ◽  
Vol 55 (66) ◽  
pp. 9-14 ◽  
Author(s):  
Prashant Baral ◽  
Rijan B. Kayastha ◽  
Walter W. Immerzeel ◽  
Niraj S. Pradhananga ◽  
Bikas C. Bhattarai ◽  
...  

AbstractMonitoring the glacier mass balance of summer-accumulation-type Himalayan glaciers is critical to not only assess the impact of climate change on the volume of such glaciers but also predict the downstream water availability and the global sea-level change in future. To better understand the change in meteorological parameters related to glacier mass balance and runoff in a glacierized basin and to assess the highly heterogeneous glacier responses to climate change in the Nepal Himalaya and nearby ranges, the Cryosphere Monitoring Project (CMP) carries out meteorological observations in Langtang Valley and mass-balance measurements on Yala Glacier, a debris-free glacier in the same valley. A negative annual mass balance of –0.89m w.e. and the rising equilibrium-line altitude of Yala Glacier indicate a continuation of a secular trend toward more negative mass balances. Lower temperature lapse rate during the monsoon, the effect of convective precipitation associated with mesoscale thermal circulation in the local precipitation and the occurrence of distinct diurnal cycles of temperature and precipitation at different stations in the valley are other conclusions of this comprehensive scientific study initiated by CMP which aims to yield multi-year glaciological, hydrological and meteorological observations in the glacierized Langtang River basin.


2019 ◽  
Vol 205 ◽  
pp. 10-21 ◽  
Author(s):  
Ruibo Zhang ◽  
Wenshou Wei ◽  
Huaming Shang ◽  
Shulong Yu ◽  
Xiaohua Gou ◽  
...  

2005 ◽  
Vol 42 ◽  
pp. 277-283 ◽  
Author(s):  
Andrew Wright ◽  
Jemma Wadham ◽  
Martin Siegert ◽  
Adrian Luckman ◽  
Jack Kohler

AbstractA surface-energy/mass-balance model with an explicit calculation of meltwater refreezing and superimposed ice formation is applied to midre Lovénbreen, Spitsbergen, Svalbard. The model is run with meteorological measurements to represent the present climate, and run with scenarios taken from global climate model predictions based on the IS92a emissions scenario to represent future climates. Model results indicate that superimposed ice accounts for on average 37% of the total net accumulation under present conditions. The model is found to be highly sensitive to changes in the mean annual air temperature and much less sensitive to changes in the total annual precipitation. A 0.5˚C decade–1 temperature increase is predicted to cause an average mass-balance change of –0.43 ma–1, while a 2% decade–1 increase in precipitation will result in only a +0.02 ma–1 change in mass balance. An increase in temperature results in a significant decrease in the size of the accumulation area at midre Lovénbreen and hence a similar decrease in the net volume of superimposed ice. The model predicts, however, that the relative importance of superimposed ice will increase to account for >50% of the total accumulation by 2050. The results show that the refreezing of meltwater and in particular the formation of superimposed ice make an important positive contribution to the mass balance of midre Lovénbreen under present conditions and will play a vital future role in slowing down the response of glacier mass balance to climate change.


2015 ◽  
Vol 9 (3) ◽  
pp. 1105-1128 ◽  
Author(s):  
J. M. Shea ◽  
W. W. Immerzeel ◽  
P. Wagnon ◽  
C. Vincent ◽  
S. Bajracharya

Abstract. In this study, we apply a glacier mass balance and ice redistribution model to examine the sensitivity of glaciers in the Everest region of Nepal to climate change. High-resolution temperature and precipitation fields derived from gridded station data, and bias-corrected with independent station observations, are used to drive the historical model from 1961 to 2007. The model is calibrated against geodetically derived estimates of net glacier mass change from 1992 to 2008, termini position of four large glaciers at the end of the calibration period, average velocities observed on selected debris-covered glaciers, and total glacierized area. We integrate field-based observations of glacier mass balance and ice thickness with remotely sensed observations of decadal glacier change to validate the model. Between 1961 and 2007, the mean modelled volume change over the Dudh Koshi basin is −6.4 ± 1.5 km3, a decrease of 15.6% from the original estimated ice volume in 1961. Modelled glacier area change between 1961 and 2007 is −101.0 ± 11.4 km2, a decrease of approximately 20% from the initial extent. The modelled glacier sensitivity to future climate change is high. Application of temperature and precipitation anomalies from warm/dry and wet/cold end-members of the CMIP5 RCP4.5 and RCP8.5 ensemble results in sustained mass loss from glaciers in the Everest region through the 21st century.


Sign in / Sign up

Export Citation Format

Share Document