Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach

2021 ◽  
Author(s):  
Rana Muhammad Adnan ◽  
Andrea Petroselli ◽  
Salim Heddam ◽  
Celso Augusto Guimarães Santos ◽  
Ozgur Kisi
2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Babak Mohammadi

AbstractThe growing menace of global warming and restrictions on access to water in each region is a huge threat to global hydrological sustainability. Hence, the perspective at which hydrological studies are currently being carried out across the world to quantify and understand the water cycle modeling requires a further boost. In the past few decades, the theoretical understanding of machine learning (ML) algorithms for solving engineering issues, and the application of this method to practical problems have made very significant progress. In the field of hydrology, ML has been using for a better understanding of hydrological complexities. Then, using ML-based approaches for hydrological simulation have been a popular method for runoff modeling in recent years; it seems necessary to understand the application of ML in runoff modeling fully. Current research seeks to have an overview for rainfall–runoff modeling using ML approaches in recent years, including integrated and ordinary ML techniques (such as ANFIS, ANN, and SVM models). The main hydrological topics in this review study include surface hydrology, streamflow, rainfall–runoff, and flood modeling via ML approaches. Therefore, in this study, the author has critically reviewed the characteristics of machine learning models in runoff simulation, including advantages and disadvantages of three widely used machine learning models.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 251 ◽  
Author(s):  
Youngmin Seo ◽  
Sungwon Kim ◽  
Vijay Singh

Accurate modeling for nonlinear and nonstationary rainfall-runoff processes is essential for performing hydrologic practices effectively. This paper proposes two hybrid machine learning models (MLMs) coupled with variational mode decomposition (VMD) to enhance the accuracy for daily rainfall-runoff modeling. These hybrid MLMs consist of VMD-based extreme learning machine (VMD-ELM) and VMD-based least squares support vector regression (VMD-LSSVR). The VMD is employed to decompose original input and target time series into sub-time series called intrinsic mode functions (IMFs). The ELM and LSSVR models are selected for developing daily rainfall-runoff models utilizing the IMFs as inputs. The performances of VMD-ELM and VMD-LSSVR models are evaluated utilizing efficiency and effectiveness indices. Their performances are also compared with those of VMD-based artificial neural network (VMD-ANN), discrete wavelet transform (DWT)-based MLMs (DWT-ELM, DWT-LSSVR, and DWT-ANN) and single MLMs (ELM, LSSVR, and ANN). As a result, the VMD-based MLMs provide better accuracy compared with the single MLMs and yield slightly better performance than the DWT-based MLMs. Among all models, the VMD-ELM and VMD-LSSVR models achieve the best performance in daily rainfall-runoff modeling with respect to efficiency and effectiveness. Therefore, the VMD-ELM and VMD-LSSVR models can be an alternative tool for reliable and accurate daily rainfall-runoff modeling.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 57
Author(s):  
Konstantinos Vantas ◽  
Epaminondas Sidiropoulos

The identification and recognition of temporal rainfall patterns is important and useful not only for climatological studies, but mainly for supporting rainfall–runoff modeling and water resources management. Clustering techniques applied to rainfall data provide meaningful ways for producing concise and inclusive pattern classifications. In this paper, a timeseries of rainfall data coming from the Greek National Bank of Hydrological and Meteorological Information are delineated to independent rainstorms and subjected to cluster analysis, in order to identify and extract representative patterns. The computational process is a custom-developed, domain-specific algorithm that produces temporal rainfall patterns using common characteristics from the data via fuzzy clustering in which (a) every storm may belong to more than one cluster, allowing for some equivocation in the data, (b) the number of the clusters is not assumed known a priori but is determined solely from the data and, finally, (c) intra-storm and seasonal temporal distribution patterns are produced. Traditional classification methods include prior empirical knowledge, while the proposed method is fully unsupervised, not presupposing any external elements and giving results superior to the former.


2001 ◽  
Author(s):  
Fred L. Ogden ◽  
Ehab A. Meselhe ◽  
Justin Niedzialek ◽  
Ben Smith

2021 ◽  
pp. 127043
Author(s):  
Kang Xie ◽  
Pan Liu ◽  
Jianyun Zhang ◽  
Dongyang Han ◽  
Guoqing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document