scholarly journals Economic damages due to extreme precipitation during tropical storms: evidence from Jamaica

2021 ◽  
Author(s):  
Dino Collalti ◽  
Eric Strobl

AbstractThis study investigates economic damage risk due to extreme rainfall during tropical storms in Jamaica. To this end, remote sensing precipitation data are linked to regional damage data for five storms. Extreme value modelling of precipitation is combined with an estimated damage function and satellite-derived nightlight intensity to estimate local risk in monetary terms. The results show that variation in maximum rainfall during a storm significantly contributes to parish level damages even after controlling for local wind speed. For instance, the damage risk for a 20 year rainfall event in Jamaica is estimated to be at least 238 million USD, i.e. about 1.5% of Jamaica’s yearly GDP.

2016 ◽  
Vol 96 (4) ◽  
pp. 504-514 ◽  
Author(s):  
Wenjing Chen ◽  
Xin Jia ◽  
Chunyi Li ◽  
Haiqun Yu ◽  
Jing Xie ◽  
...  

Extreme rainfall events are infrequent disturbances that affect urban environments and soil respiration (Rs). Using data measured in an urban forest ecosystem in Beijing, China, we examined the link between gross primary production (GPP) and soil respiration on a diurnal scale during an extreme rainfall event (i.e., the “21 July 2012 event”), and we examined diel and seasonal environmental controls on Rs. Over the seasonal cycle, Rs increased exponentially with soil temperature (Ts). In addition, Rs was hyperbolically related to soil volumetric water content (VWC), increasing with VWC below a threshold of 0.17 m3 m−3, and then decreasing with further increases in VWC. Following the extreme rainfall event (177 mm), Rs showed an abrupt decrease and then maintained a low value of ∼0.3 μmol m−2 s−1 for about 8 h as soil VWC reached the field capacity (0.34 m3 m−3). Rs became decoupled from Ts and increased very slowly, while GPP showed a greater increase. A bivariate Q10-hyperbolical model, which incorporates both Ts and VWC effects, better fits Rs than the Q10 model in summer but not for whole year.


2021 ◽  
Vol 134 (1) ◽  
Author(s):  
Manas Pant ◽  
Soumik Ghosh ◽  
Shruti Verma ◽  
Palash Sinha ◽  
R. K. Mall ◽  
...  

2015 ◽  
Vol 15 (2) ◽  
pp. 261-272 ◽  
Author(s):  
M. H. Spekkers ◽  
F. H. L. R. Clemens ◽  
J. A. E. ten Veldhuis

Abstract. Rainstorm damage caused by the malfunction of urban drainage systems and water intrusion due to defects in the building envelope can be considerable. Little research on this topic focused on the collection of damage data, the understanding of damage mechanisms and the deepening of data analysis methods. In this paper, the relative contribution of different failure mechanisms to the occurrence of rainstorm damage is investigated, as well as the extent to which these mechanisms relate to weather variables. For a case study in Rotterdam, the Netherlands, a property level home insurance database of around 3100 water-related damage claims was analysed. The records include comprehensive transcripts of communication between insurer, insured and damage assessment experts, which allowed claims to be classified according to their actual damage cause. The results show that roof and wall leakage is the most frequent failure mechanism causing precipitation-related claims, followed by blocked roof gutters, melting snow and sewer flooding. Claims related to sewer flooding were less present in the data, but are associated with significantly larger claim sizes than claims in the majority class, i.e. roof and wall leakages. Rare events logistic regression analysis revealed that maximum rainfall intensity and rainfall volume are significant predictors for the occurrence probability of precipitation-related claims. Moreover, it was found that claims associated with rainfall intensities smaller than 7–8 mm in a 60-min window are mainly related to failure processes in the private domain, such as roof and wall leakages. For rainfall events that exceed the 7–8 mm h−1 threshold, the failure of systems in the public domain, such as sewer systems, start to contribute considerably to the overall occurrence probability of claims. The communication transcripts, however, lacked information to be conclusive about to which extent sewer-related claims were caused by overloading of sewer systems or failure of system components.


2017 ◽  
Author(s):  
Matthieu Spekkers ◽  
Viktor Rözer ◽  
Annegret Thieken ◽  
Marie-Claire ten Veldhuis ◽  
Heidi Kreibich

Abstract. Flooding is assessed as the most important natural hazard in Europe, causing thousands of deaths, affecting millions of people and accounting for large economic losses in the past decade. Little is known about the damage processes associated with extreme rainfall in cities, due to a lack of accurate, comparable and consistent damage data. The objective of this study is to investigate the impacts of extreme rainfall on residential buildings and how affected households coped with these impacts in terms of precautionary and emergency actions. Analyses are based on a unique dataset of damage characteristics and a wide range of potential damage explaining variables at the household level, collected through computer-aided telephone interviews (CATI) and an online survey. Exploratory data analyses based on a total of 859 completed questionnaires in the cities of Münster (Germany) and Amsterdam (the Netherlands) revealed that the uptake of emergency measures is related to characteristics of the hazardous event. In case of high water levels, more efforts are made to reduce damage, while emergency response that aims to prevent damage is less likely to be effective. The difference in magnitude of the events in Münster and Amsterdam in terms of rainfall intensity and water depth, is probably also the most important cause for the differences between the cities in terms of the suffered financial losses. Factors that significantly contributed to damage in at least one of the case studies are water contamination, the presence of a basement in the building and people's awareness of the upcoming event. Moreover, this study confirms conclusions by previous studies that people's experience with damaging events positively correlates with precautionary behaviour. For improving future damage data acquisition, we recommend to include cell-phones in a CATI survey to avoid biased sampling towards certain age groups.


2007 ◽  
Vol 32 (2) ◽  
pp. 110-113 ◽  
Author(s):  
Erlei M. Reis ◽  
Jones A.P. Santos ◽  
Marta Maria C. Blum

A model to estimate damage caused by gray leaf spot of corn (Cercospora zea-maydis) was developed from experimental field data gathered during the summer seasons of 2000/01 and during the second crop season [January-seedtime] of 2001, in the southwest of Goiás state. Three corn hybrids were grown over two seasons and on two sites, resulting in 12 experimental plots. A disease intensity gradient (lesions per leaf) was generated through application, three times over the season, of five different doses of the fungicide propiconazol. From tasseling onward, disease intensity on the ear leaf (El), and El - 1, El - 2, El + 1, and El + 2, was evaluated weekly. A manual harvest at the physiological ripening stage was followed by grain drying and cleaning. Finally, grain yield in kg.ha-1 was estimated. Regression analysis, performed between grain yield and all combinations of the number of lesions on each leaf type, generated thirty linear equations representing the damage function. To estimate losses caused by different disease intensities at different corn growth stages, these models should first be validated. Damage coefficients may be used in determining the economic damage threshold.


Sign in / Sign up

Export Citation Format

Share Document