Dynamic model based nonlinear tracking control of a planar parallel manipulator

2009 ◽  
Vol 60 (4) ◽  
pp. 597-606 ◽  
Author(s):  
Wei-wei Shang ◽  
Shuang Cong ◽  
Shi-long Jiang
Author(s):  
Yu Wang ◽  
Zongxuan Sun ◽  
Kim A. Stelson

With its superior power to weight ratio, the hydrostatic dynamometer is an ideal candidate for transient engine or powertrain testing. Given its high bandwidth, the hydrostatic dynamometer can be further used as a virtual power source to emulate the dynamics of the automotive hybrid power sources. This will greatly expedite the investigation of various hybrid powertrain architectures and control methodologies without building the complete hybrid system. This paper presents the design, modeling, nonlinear tracking control and experimental investigation of a transient hydrostatic dynamometer. An electronically controlled load sensing mechanism is employed to facilitate the supply pressure control, and a two-stage high bandwidth valve is used as the primary actuator for the loading pressure control. To enable the model-based control, a 9th order physics-based model is formulated and then, identified and validated with experimental data. On this basis, model-based nonlinear tracking controls are designed for this multivariable nonlinear system to realize the precise engine speed tracking. A nonlinear model-based inversion plus PID control is first implemented and then, a state feedback control via feedback linearization is designed for reference tracking. Experimental results demonstrate precise tracking performance with less than 5% tracking error for both transient and steady state operations.


Author(s):  
Ming Li ◽  
Huapeng Wu ◽  
Heikki Handroos ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

Due to the high stiffness, high dynamic performance, the parallel manipulator presents great advantages in the industrial manufacture. However in the machining process, the external low frequency disturbance, e.g. the varying cutting force, has a significant effect on the control system of parallel manipulator, which presents a chatter phenomenon on the end-effector of manipulator. In this paper, a feed forward control strategy is proposed to eliminate the effect of the random external disturbance on the control system of parallel manipulator. By applying the external disturbance force on the inverse dynamic model, the compensation torque is calculated and fed forward into the manipulator driving joints to cancel out the effect of the disturbance acting on the manipulator end-effector. The key issue herein is to be able to establish the accurate dynamic model for the parallel manipulator. Furthermore, in order to guarantee the position precision of the manipulator, a feed forward model-based control strategy combined with the feedback loop PV (position and velocity) control has been developed based on the reference trajectory, which could relatively simplify the highly nonlinear control system of the parallel manipulator and obtain a stable tracking error model. The whole research has been carried out on a parallel manipulator named CaPaMan which has been built in the laboratory of robotics and mechatronics in university of Cassino and South Latium. The results show that the chatter phenomenon could be utterly depressed by the force compensation from the feed forward path of the external disturbance; meanwhile the model-based controller can guarantee the trajectory tracking accuracy within a stable error by choosing the suitable PV gains.


2010 ◽  
Vol 34 (1) ◽  
pp. 137-150 ◽  
Author(s):  
Meysar Zeinali ◽  
Leila Notash

This paper presents the design and implementation of a systematic fuzzy modelling methodology for the inverse dynamic modelling of robot manipulators. The fuzzy logic modelling methodology is motivated in part by the difficulties encountered in the modelling of complex nonlinear uncertain systems, and by the objective of developing an efficient dynamic model for the real-time model-based control. The methodology is applied to build the fuzzy logic-based inverse dynamic model of a prototyped wire-actuated parallel manipulator with uncertain dynamics. The developed inverse dynamics has been used in a fuzzy model-based adaptive robust controller for the tracking control of the parallel manipulator.


Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 643-657 ◽  
Author(s):  
Ahmet Dumlu ◽  
Koksal Erenturk

SUMMARYIn this study, kinematic analysis of 6-DOF RSS parallel manipulator using Denavit Hartenbeng (D-H) method is investigated. In addition, in order to improve the proposed method, determination of all the active and passive angles, required to obtain Jacobian and complete dynamic model of manipulator, is also achieved. The effects of dynamic models of 6-DOF RSS parallel manipulator with its actuators on trajectory tracking control are studied in detail. Feedback dynamic compensation terms of motor-mechanism coupling system that is needed to compute torque control are obtained through both a single link approximation model and a complete dynamic model. The complete model is derived by taking account of the interaction between the input links and coupler links of the manipulator. Simulations showed that obtaining complete model of manipulator by means of D-H method and using computed control law could improve the quality of trajectory tracking control of parallel manipulator.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Guoning Si ◽  
Mengqiu Chu ◽  
Zhuo Zhang ◽  
Haijie Li ◽  
Xuping Zhang

This paper presents a novel method of dynamic modeling and design optimization integrated with dynamics for parallel robot manipulators. Firstly, a computationally efficient modeling method, the discrete time transfer matrix method (DT-TMM), is proposed to establish the dynamic model of a 3-PRR planar parallel manipulator (PPM) for the first time. The numerical simulations are performed with both the proposed DT-TMM dynamic modeling and the ADAMS modeling. The applicability and effectiveness of DT-TMM in parallel manipulators are verified by comparing the numerical results. Secondly, the design parameters of the 3-PRR parallel manipulator are optimized using the kinematic performance indices, such as global workspace conditioning index (GWCI), global condition index (GCI), and global gradient index (GGI). Finally, a dynamic performance index, namely, driving force index (DFI), is proposed based on the established dynamic model. The described motion trajectory of the moving platform is placed into the optimized workspace and the initial position is determined to finalize the end-effector trajectory of the parallel manipulator by the further optimization with the integrated kinematic and dynamic performance indices. The novelty of this work includes (1) developing a new dynamic model method with high computation efficiency for parallel robot manipulators using DT-TMM and (2) proposing a new dynamic performance index and integrating the dynamic index into the motion and design optimization of parallel robot manipulators.


Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong ◽  
Chen Ji ◽  
Ming Liu

An efficient dynamic modelling approach was presented for planar parallel manipulator with flexible links. To increase the accuracy of the model, an improved curvature-based finite element method (ICFE) was developed for discretisation of the flexible links. Then, a novel approach for analysis of the coupling between rigid-body motion and flexible-body motion was proposed, and compared to the regular geometrical method, the proposed method was accurate and easy to implement. With the aforementioned proposed methods, the Kane equation was integrated to formulate the dynamic model of a 3RRR planar parallel manipulator. Finally, comparison studies were performed to validate the proposed ICFE and the integrated dynamic modelling method. Compared to the regular curvature-based finite element method (CFE), the ICFE exhibits improved accuracy with equivalent degrees of freedom. Additionally, the proposed integrated dynamic model shows a good agreement with the Abaqus model. Therefore, it was concluded that the proposed dynamic modelling method herein was efficient and accurate for parallel manipulators with flexible links, demonstrating reasonable potentials for model based control.


Sign in / Sign up

Export Citation Format

Share Document