scholarly journals Integrating Dynamics into Design and Motion Optimization of a 3-PRR Planar Parallel Manipulator with Discrete Time Transfer Matrix Method

2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Guoning Si ◽  
Mengqiu Chu ◽  
Zhuo Zhang ◽  
Haijie Li ◽  
Xuping Zhang

This paper presents a novel method of dynamic modeling and design optimization integrated with dynamics for parallel robot manipulators. Firstly, a computationally efficient modeling method, the discrete time transfer matrix method (DT-TMM), is proposed to establish the dynamic model of a 3-PRR planar parallel manipulator (PPM) for the first time. The numerical simulations are performed with both the proposed DT-TMM dynamic modeling and the ADAMS modeling. The applicability and effectiveness of DT-TMM in parallel manipulators are verified by comparing the numerical results. Secondly, the design parameters of the 3-PRR parallel manipulator are optimized using the kinematic performance indices, such as global workspace conditioning index (GWCI), global condition index (GCI), and global gradient index (GGI). Finally, a dynamic performance index, namely, driving force index (DFI), is proposed based on the established dynamic model. The described motion trajectory of the moving platform is placed into the optimized workspace and the initial position is determined to finalize the end-effector trajectory of the parallel manipulator by the further optimization with the integrated kinematic and dynamic performance indices. The novelty of this work includes (1) developing a new dynamic model method with high computation efficiency for parallel robot manipulators using DT-TMM and (2) proposing a new dynamic performance index and integrating the dynamic index into the motion and design optimization of parallel robot manipulators.

Author(s):  
Gianmarc Coppola ◽  
Dan Zhang ◽  
Kefu Liu ◽  
Zhen Gao

In this work the dynamic performance and control of a 2DOF parallel robot is conducted. The study is partly motivated by large variations in dynamic performance and control within the reachable workspace of many parallel manipulators. The forward dynamic model of the robot is derived in detail. The connection method is directly utilized for this derivation. Subsequently, a dynamic performance study is undertaken. This reveals important information whilst using a forward dynamic model. A performance index is proposed to determine the variability of performance of the parallel manipulator. Then a trajectory-tracking scenario is undertaken using a linear controller. By means of control, the simulations illustrate the validity of the proposed index for parallel manipulators.


2012 ◽  
Vol 4 (3) ◽  
Author(s):  
Songtao Liu ◽  
Tian Huang ◽  
Jiangping Mei ◽  
Xueman Zhao ◽  
Panfeng Wang ◽  
...  

This paper deals with the optimal design of a 4-DOF SCARA type (three translations and one rotation) parallel robot using dynamic performance indices and angular constraints within and amongst limbs. The architecture of the robot is briefly addressed with emphasis on the mechanical realization of the articulated traveling plate for achieving a lightweight yet rigid design. On the basis of the kinematic singularity analysis, two types of transmission angle constraints are considered to ensure the kinematic performance. A simplified model of rigid body dynamics is then formulated, with which two global dynamic performance indices are proposed for minimization by taking into account both inertial and centrifugal/Coriolis effects. In addition, the servomotor specifications are estimated using the Extended Adept Cycle. The proposed approach has successfully been employed to develop a prototype machine.


2011 ◽  
Vol 199-200 ◽  
pp. 19-24
Author(s):  
Jin Fu Zhang

In order to investigate dynamic performance of flexible multi-link manipulators more exactly, establishing the dynamic model with accounting for link foreshortening and link material damping is needed. In this paper, a new dynamic model for planar flexible multi-link manipulators is established by using Lagrange approach. Both link foreshortening and link material damping are accounted for in this model. As a case simulation, this model is applied to a planar flexible two-link manipulator with a tip mass, and the motion responses of the manipulator are obtained using Gear method.


Author(s):  
Yulei Hou ◽  
Guoxing Zhang ◽  
Daxing Zeng

Dynamic modeling serves as the fundamental basis for dynamic performance analysis and is an essential aspect of the control scheme design of parallel manipulators. This report presents a concise and efficient solution to the dynamics of Stewart parallel manipulators based on the screw theory. The initial pose of these manipulators is described. Then the pose matrix of each link of the Stewart parallel mechanism is obtained using an inverse kinematics solution and an exponential product formula. Considering the constraint relationship between joints, the constraint matrix of the Stewart parallel manipulator is deduced. In addition, the Jacobian matrix and the twist of each link are obtained. Moreover, by deriving the differential form of the constraint matrix, the spatial acceleration of each link is obtained. Based on the force balance relationship of each link, the inverse dynamics and the general form of the dynamic model of the Stewart parallel manipulator is established and the process of inverse dynamics is summarized. The dynamic model is then verified via dynamic simulation using the ADAMS software. A numerical example is considered to demonstrate the feasibility and effectiveness of this model. The proposed dynamic modeling approach serves as a fundamental basis for structural optimization and control scheme design of the Stewart parallel manipulators.


Author(s):  
Wenshuo Ma ◽  
Yan Xie ◽  
Jingjun Yu ◽  
Xu Pei

Dynamic performance is of great importance to compliant mechanisms which are employed in dynamic applications, especially if the dynamic problems in DOC (degree of constraint) directions are to be met. An investigation on the dynamic characteristics of a 2R compliant mechanism is presented. Based on the substructure techniques, the in-plane dynamic model of the preceding compliant mechanisms is developed. The natural frequencies and sensitivities are then analyzed. The numerical result verifies the validity of the proposed method. Finally, optimal design of compliant mechanism is investigated.


Robotica ◽  
2002 ◽  
Vol 20 (3) ◽  
pp. 329-339 ◽  
Author(s):  
Bongsoo Kang ◽  
James K. Mills

This paper presents a dynamic model of a planar parallel manipulator including structural flexibility of several linkages. The equations of motion are formulated using the Lagrangian equations of the first type and Lagrangian multipliers are introduced to represent the geometry of multiple closed loop chains. Then, an active damping approach using a PZT actuator is described to attenuate structural vibration of the linkages. Overall dynamic behavior of the manipulator, induced from structural flexibility of the linkage, is well illustrated through simulations. This analysis will be used to develop a prototype parallel manipulator.


Sign in / Sign up

Export Citation Format

Share Document