Primary parametric resonance–primary resonance response of stiffened plates with moving boundary conditions

2014 ◽  
Vol 79 (3) ◽  
pp. 2207-2223 ◽  
Author(s):  
Niu-Jing Ma ◽  
Rong-Hui Wang ◽  
Qiang Han
2010 ◽  
Vol 7 ◽  
pp. 182-190
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh. Nasibullaeva

In this paper the investigation of the axisymmetric flow of a liquid with a boundary perpendicular to the flow is considered. Analytical equations are derived for the radial and axial velocity and pressure components of fluid flow in a pipe of finite length with a movable right boundary, and boundary conditions on the moving boundary are also defined. A numerical solution of the problem on a finite-difference grid by the iterative Newton-Raphson method for various velocities of the boundary motion is obtained.


2000 ◽  
Vol 122 (2) ◽  
pp. 213-218 ◽  
Author(s):  
Hung-Ming Tai ◽  
Cheng-Kuo Sung

This paper investigates the effects of belt flexural rigidity and belt tension on transmission error of a carriage-driving system. The beam model associated with both the clamped and moving boundary conditions at two ends is utilized to derive the governing equation of the belt. The belt flexural rigidity is obtained and verified by an experimental technique. In addition, a numerical method is proposed to determine the belt profile, transmission error and transmission stiffness. Results show that transmission error of a carriage-driving system increases when the carriage moves away from the driving pulley due to finite belt flexural rigidity. According to the analyses, application of appropriate tension on the belt can significantly reduce the error. Furthermore, the transmission stiffness for representing the entire rigidity between the carriage and pulley is investigated based on the proposed beam model. A three-dimensional plot that indicates the relationship among the transmission stiffness, belt tension and the position of the carriage is obtained. [S1050-0472(00)01102-8]


Author(s):  
Andrea Arena ◽  
Giovanni Formica ◽  
Walter Lacarbonara ◽  
Harry Dankowicz

A computational framework is proposed to path follow the periodic solutions of nonlinear spatially continuous systems and more general coupled multiphysics problems represented by systems of partial differential equations with time-dependent excitations. The set of PDEs is cast in first order differential form (in time) u˙ = f(u,s,t;c) where u(s,t) is the vector collecting all state variables including the velocities/time rates, s is a space coordinate (here, one-dimensional systems are considered without lack of generality for the space dependence) and t denotes time. The vector field f depends, in general, not only on the classical state variables (such as positions and velocities) but also on the space gradients of the leading unknowns. The space gradients are introduced as part of the state variables. This is justified by the mathematical and computational requirements on the continuity in space up to the proper differential order of the space gradients associated with the unknown position vector field. The path following procedure employs, for the computation of the periodic solutions, only the evaluation of the vector field f. This part of the path following procedure within the proposed combined scheme was formerly implemented by Dankowicz and coworkers in a MATLAB software package called COCO. The here proposed procedure seeks to discretize the space dependence of the variables using finite elements based on Lagrangian polynomials which leads to a discrete form of the vector field f. A concurrent bifurcation analysis is carried out by calculating the eigenvalues of the monodromy matrix. A hinged-hinged nonlinear beam subject to a primary-resonance harmonic transverse load or to a parametric-resonance horizontal end displacement is considered as a case study. Some primary-resonance frequency-response curves are calculated along with their stability to assess the convergence of the discretization scheme. The frequency-response curves are shown to be in close agreement with those calculated by direct integration of the PDEs through the FE software called COMSOL Multiphysics. Besides primary-resonance direct forcing conditions, also parametric forcing causing the principal parametric resonance of the lowest two bending modes is considered through construction of the associated transition curves. The proposed approach integrates algorithms from the finite element and bifurcation domains thus enabling an accurate and effective unfolding of the bifurcation and post-bifurcation scenarios of nonautonomous PDEs with the underlying structures.


1966 ◽  
Vol 54 (3) ◽  
pp. 399-401 ◽  
Author(s):  
F.J. Young ◽  
R.C. Costen ◽  
D. Adamson

1980 ◽  
Vol 47 (4) ◽  
pp. 715-719 ◽  
Author(s):  
M. P. Paidoussis ◽  
N. T. Issid ◽  
M. Tsui

This paper examines experimentally the dynamical behavior of a flexible slender cylinder in axial flow, perturbed harmonically in time. Parametric resonance oscillations were found to exist over certain ranges of frequencies and amplitudes of flow-velocity perturbations. The most prominent of the resonances, in these experiments, were associated with the second-mode principal primary resonance, and were studied extensively. Agreement with theory was found to be quite good.


Sign in / Sign up

Export Citation Format

Share Document