Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam

2020 ◽  
Vol 100 (2) ◽  
pp. 951-971 ◽  
Author(s):  
Wenke Li ◽  
Nicholas E. Wierschem ◽  
Xinhui Li ◽  
Tiejun Yang ◽  
Michael J. Brennan
2013 ◽  
Vol 325-326 ◽  
pp. 214-217
Author(s):  
Yong Chen ◽  
Yi Xu

Using nonlinear energy sink absorber (NESA) is a good countermeasure for vibration suppression in wide board frequency region. The nonlinear normal modes (NNMs) are helpful in dynamics analysis for a NESA-attached system. Being a primary structure, a cantilever beam whose modal functions contain hyperbolic functions is surveyed, in case of being attached with NESA and subjected to a harmonic excitation. With the help of Galerkins method and Raushers method, the NNMs are obtained analytically. The comparison of analytical and numerical results indicates a good agreement, which confirms the existence of the nonlinear normal modes.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Wenke Li ◽  
Nicholas E. Wierschem ◽  
Xinhui Li ◽  
Tiejun Yang ◽  
Michael J. Brennan

Abstract In this paper, the single-sided vibro-impact track nonlinear energy sink (SSVI track NES) is studied. The SSVI track NES, which is attached to a primary structure, has nonlinear behavior caused by the NES mass moving on a fixed track and impacting on the primary structure at an impact surface. Unlike previous studies of the SSVI track NES, both the horizontal and vertical dynamics of the primary structure are considered. A numerical study is carried out to investigate the way in which energy is dissipated in this system. Assuming a track shape with a quartic polynomial, an optimization procedure that considers the total energy dissipated during a time period is carried out, to determine the optimum NES mass and track parameter. It is found that there is dynamic coupling between the horizontal and vertical directions caused by the SSVI track NES motion. The vibrational energy, originally in the structure in the horizontal direction, is transferred to the vertical motion of the structure where it is dissipated. Considering that many civil and mechanical systems are particularly vulnerable to extreme loads in the horizontal direction, this energy transformation can be beneficial to prevent or limit damage to the structure. The effect on energy dissipation of the position of the impact surface in the SSVI track NES and the ratio of the vertical to horizontal stiffness in the primary structure are discussed. Numerical results demonstrate a robust and stable performance of the SSVI track NES over a wide range of stiffness ratios.


Author(s):  
Oleg V. Gendelman ◽  
Grigori Sigalov ◽  
Mercedes Mane ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis ◽  
...  

We introduce a novel type of the nonlinear energy sink (NES) designed as an eccentric mass rotating within a horizontal plane. The gravity is not a factor here, therefore such a rotator has no eigenfrequency and can inertially couple and resonate with any mode of the primary system. The dynamics of the system consisting of a primary linear oscillator and the eccentric rotator is rich beyond expectations and features multiple resonances and chaotic modes. A numerical study shows that the system, when subject to high impulsive loads, inevitably enters a 1:1 resonance that enables highly efficient targeted energy transfer from the primary mass to the NES. The results of an experimental investigation are in good agreement with the analytical and numerical estimates.


2015 ◽  
Vol 141 (1) ◽  
pp. 04014104 ◽  
Author(s):  
Jingjing Wang ◽  
Nicholas E. Wierschem ◽  
Billie F. Spencer ◽  
Xilin Lu

Author(s):  
Adriane G. Moura ◽  
Jacob Dodson

Abstract We present a piezoelectric nonlinear energy sink (NES) framework for attenuation of nonlinear vibrations in a cantilever beam. The NES acts as a nonlinear piezoelectric shunt that implements linear components along with op-amp and multiplier nonlinear circuit elements to enable NES dynamics in the electrical domain. The piezoelectric NES was recently shown to provide wideband vibration attenuation in a cantilever undergoing linear mechanical vibrations. Following these recent efforts, we implement the piezoelectric NES to broadband attenuations of nonlinear vibrations of a thin cantilever beam. The model makes use of the linear modal parameters for the bimorph cantilever (PZT-5H patches connected in parallel) for the fundamental natural frequency obtained using the Rayleigh-Ritz method. Circuit parameters for the linear bimorph cantilever target frequency are obtained using harmonic balance analysis. The performance of the piezoelectric NES for broadband attenuation of nonlinear vibrations is evaluated and simulations are performed by modifying the structure (with a tip mass to move its resonance frequency) without tuning the NES circuit components. Simulations are presented for a range of acceleration levels and frequency ranges to demonstrate the broadband attenuation of the nonlinear vibrations using a single circuit configuration.


2016 ◽  
Vol 10 (3) ◽  
pp. 147 ◽  
Author(s):  
Rodrigo Tumolin Rocha ◽  
Jose Manoel Balthazar ◽  
Angelo Marcelo Tusset ◽  
Vinicius Piccirillo ◽  
Jorge Luis Palacios Felix

Sign in / Sign up

Export Citation Format

Share Document