scholarly journals High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamics

2020 ◽  
Vol 102 (4) ◽  
pp. 2583-2596
Author(s):  
Zhenhua Zhao ◽  
Dong Cao ◽  
Jun Yang ◽  
Huiming Wang
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper studies the fixed-time trajectory tracking control problem of robot manipulators in the presence of uncertain dynamics and external disturbances. First, a novel nonsingular fixed-time sliding mode surface is presented, which can ensure that the convergence time of the suggested surface is bounded regardless of the initial states. Subsequently, a novel fast nonsingular fixed-time sliding mode control (NFNFSMC) is developed so that the closed-loop system is fixed-time convergent to the equilibrium. By applying the proposed NFNFSMC method and the adaptive technique, a novel adaptive nonsingular fixed-time control scheme is proposed, which can guarantee fast fixed-time convergence of the tracking errors to small regions around the origin. With the proposed control method, the lumped disturbance is compensated by the adaptive technique, whose prior information about the upper bound is not needed. The fixed-time stability of the trajectory tracking control under the proposed controller is proved by the Lyapunov stability theory. Finally, corresponding simulations are given to illustrate the validity and superiority of the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document