Microwave Plasma Gasification of a Variety of Fuel for Syngas Production

2019 ◽  
Vol 39 (5) ◽  
pp. 1211-1225 ◽  
Author(s):  
Aytac Sanlisoy ◽  
Melda Ozdinc Carpinlioglu
2013 ◽  
Vol 38 (34) ◽  
pp. 14559-14567 ◽  
Author(s):  
Sang Jun Yoon ◽  
Young Min Yun ◽  
Myung Won Seo ◽  
Yong Ku Kim ◽  
Ho Won Ra ◽  
...  

2011 ◽  
Vol 307 ◽  
pp. 012027
Author(s):  
B Kabalan ◽  
S Wylie ◽  
A Mason ◽  
R Al-khaddar ◽  
A Al-Shamma'a ◽  
...  

2021 ◽  
pp. 125324
Author(s):  
Simon Vecten ◽  
Michael Wilkinson ◽  
Nuno Bimbo ◽  
Richard Dawson ◽  
Ben M.J. Herbert

2015 ◽  
Vol 74 (10) ◽  
Author(s):  
N. Ismail ◽  
G. S. Ho ◽  
N. A. S. Amin ◽  
F. N. Ani

Conventional pressurized gasification operates at higher pressure than atmospheric pressure and requires heat up time during startup. In this study, microwave plasma gasification was used to compensate this problem. The objectives of this paper is to investigate the CO2 microwave gasification of EFB and OPS biochar, and optimizing the char reaction rate through the addition of activated carbon as the microwave absorber. A microwave plasma gasification test rig was designed to produce syngas from oil palm biochar. From the study, it was found that EFB char performed better than OPS char as gasification fuel due to its high porosity and surface area that increased the char reactivity towards CO2. The temperature increment promoted by the addition of MW absorber using activated carbon (AC) has increased the CO composition. The optimum condition for microwave plasma char gasification of EFB was 3 lpm with 25 wt% AC that produced syngas with 1.23 vol% CH4, 20.88 vol% CO2, 43.83 vol% CO, 34.06 vol% H2 and 9.40 MJ/kg gas CV. For OPS is at 2 lpm with 1.12 vol% CH4, 35.11 vol% CO2, 35.42 vol% CO, 28.35 vol% H2 and 7.32 MJ/kg gas CV. As EFB char has larger BET surface areas and larger pores than OPS char, the ability to react with the gasifying gas is better than the OPS. Thus, resulting in higher carbon conversion. The best gasification efficiency was 72.34% at 3 lpm, 10% AC for EFB biochar plasma gasification with 12% unreacted carbon. For OPS biochar plasma gasification, the best gasification efficiency was 69.09% at 2 lpm, 10% AC with 18% unreacted carbon.


2020 ◽  
pp. 1-44
Author(s):  
Néstor D. Montiel-Bohórquez ◽  
Juan D. Saldarriaga-Loaiza ◽  
Juan F. Pérez

Abstract The updraft plasma gasification process of different municipal solid wastes (MSW) to produce syngas as substitute gaseous fuel was assessed from a techno-economic viewpoint. The plasma gasification process was modelled under a thermo-chemical approach using Aspen Plus. The model validation has been carried out with experimental data from literature, reaching an average relative error of 6.23%. The plasma torch power consumption was one of the main process parameters that affects the energy and exergy efficiencies. In spite of increasing moisture content of MSW, from 26.61% to 57.9%, the energy and exergy efficiencies expanded by 1.5% and 5.4% on average, respectively, which ascribed to the reduction of torch power consumption; this behavior resulted as the torches thermally degraded a lower fraction of dry MSW. Whereas, if plasma temperature increased (2500°C to 4000°C), the gasification efficiencies diminished because of the torch power consumption boosted by 28.3%. Furthermore, the parameter combinations process (air flow and plasma temperature) was found to reach the highest process efficiency, the efficiency ranged from 79.22% to 83.46%, highlighting the plasma gasification flexibility. The levelized cost of syngas production varied from 15.83 to 26.21 ¢US/kWh. Therefore, to make these projects feasible (waste to energy), a waste disposal charge that must be ranged between 14.67 and 26.82 ¢US/kWh was proposed.


2015 ◽  
Vol 799-800 ◽  
pp. 90-94 ◽  
Author(s):  
Sooseok Choi

Numerical analysis of plasma gasification process was carried out base on the combination of magnetohydrodynamics (MHD) and computational fluid dynamics (CFD). A two stage gasification system which consists of a heater and a plasma rector was used to enhance syngas production in the present work. Nitrogen thermal plasma jet generated by a low power plasma torch was analyzed by a self-developed MHD code, and complex thermal flow field in the plasma reactor was simulated with a commercial CFD code. The accuracy of numerical simulation was confirmed from the comparison between numerical results and experimentally measured data of arc voltage and reactor temperature. From the numerical analysis, a high temperature for the thermal cracking of methane was expected in the upper region of the plasma reactor.


Author(s):  
Philip K. Panicker ◽  
Amani Magid

This review paper describes techniques proposed for applying microwave-induced plasma gasification (MIPG) for cleaning rivers, lakes and oceans of synthetic and organic waste pollutants by converting the waste materials into energy and useful raw materials. Rivers close to urban centers tend to get filled with man-made waste materials, such as plastics and paper, gradually forming floating masses that further trap biological materials and animals. In addition, sewage from residences and industries, as well as rainwater runoff pour into rivers and lakes carrying solid wastes into the water bodies. As a result, the water surfaces get covered with a stagnant, thick layer of synthetic and biological refuse which kill the fish, harm animals and birds, and breed disease-carrying vectors. Such destruction of water bodies is especially common in developing countries which lack the technology or the means to clean up the rivers. A terrible consequence of plastic and synthetic waste being dumped irresponsibly into the oceans is the presence of several large floating masses of garbage in the worlds’ oceans, formed by the action of gyres, or circulating ocean currents. In the Pacific Ocean, there are numerous debris fields that have been labeled the Great Pacific Garbage Patch. These patches contain whole plastic litters as well as smaller pieces of plastic, called microplastics, which are tiny fragments that were broken down by the action of waves. These waste products are ingested by animals, birds and fishes, causing death or harm. Some of the waste get washed ashore on beaches along with dead marine life. The best solution for eliminating all of the above waste management problems is by the application of MIPG systems to convert solid waste materials and contaminated water into syngas, organic fuels and raw materials. MIPG is the most efficient form of plasma gasification, which is able to process the most widest range of waste materials, while consuming only about a quarter of the energy released from the feedstock. MIPG systems can be scaled in size, power rating and waste-treatment capacity to match financial needs and waste processing requirements. MIPG systems can be set up in urban locations and on the shores of the waterbody, to filter and remove debris and contaminants and clean the water, while generating electric power to feed into the grid, and fuel or raw materials for industrial use. For eliminating the pelagic debris fields, the proposed design is to have ships fitted with waste collector and filtration systems that feeds the collected waste materials into a MIPG reactor, which converts the carbonaceous materials into syngas (H2 + CO). Some of the syngas made will be used to produce the electric power needed for running the plasma generator and onboard systems, while the remainder can be converted into methanol and other useful products through the Fischer-Tropsch process. This paper qualitatively describes the implementation schemes for the above processes, wherein MIPG technology will be used to clean up major waste problems affecting the earth’s water bodies and to convert the waste into energy and raw materials in a sustainable and environmentally friendly manner, while reducing the dependence on fossil fuels and the release of carbon dioxide and methane into the atmosphere.


Gases ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 133-147
Author(s):  
Owen Sedej ◽  
Eric Mbonimpa

Rapidly increasing solid waste generation and energy demand are two critical issues of the current century. Plasma gasification, a type of waste-to-energy (WtE) technology, has the potential to produce clean energy from waste and safely destroy hazardous waste. Among plasma gasification technologies, microwave (MW)-driven plasma offers numerous potential advantages to be scaled as a leading WtE technology if its processes are well understood and optimized. This paper reviews studies on modeling experimental microwave-induced plasma gasification systems. The system characterization requires developing mathematical models to describe the multiphysics phenomena within the reactor. The injection of plasma-forming gases and carrier gases, the rate of the waste stream, and the operational power heavily influence the initiation of various chemical reactions that produce syngas. The type and kinetics of the chemical reactions taking place are primarily influenced by either the turbulence or temperature. Navier–Stokes equations are used to describe the mass, momentum, and energy transfer, and the k-epsilon model is often used to describe the turbulence within the reactor. Computational fluid dynamics software offers the ability to solve these multiphysics mathematical models efficiently and accurately.


1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document