Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production

2010 ◽  
Vol 76 (3-5) ◽  
pp. 357-369 ◽  
Author(s):  
Jae Yoon Kim ◽  
Musa Kavas ◽  
Walid M. Fouad ◽  
Guang Nong ◽  
James F. Preston ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Folasade M. Olajuyigbe ◽  
Chidinma M. Nlekerem ◽  
Olusola A. Ogunyewo

Production ofβ-glucosidase fromFusarium oxysporumwas investigated during degradation of some cellulosic substrates (Avicel,α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production ofβ-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0–11.0. Theβ-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield ofβ-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 μmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0–7.0 with relative residual activity above 60% after 180 min of incubation.β-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity ofβ-glucosidase was enhanced by Mn2+and Fe2+with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown byβ-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Consuelo Arellano

In the present research, activated carbon-supported sulfonic acid catalysts were synthesized and tested as pretreatment agents for the conversion of switchgrass into glucose. The catalysts were synthesized by reacting sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid with activated carbon. The characterization of catalysts suggested an increase in surface acidities, while surface area and pore volumes decreased because of sulfonation. Batch experiments were performed in 125 mL serum bottles to investigate the effects of temperature (30, 60, and 90 °C), reaction time (90 and 120 min) on the yields of glucose. Enzymatic hydrolysis of pretreated switchgrass using Ctec2 yielded up to 57.13% glucose. Durability tests indicated that sulfonic solid-impregnated carbon catalysts were able to maintain activity even after three cycles. From the results obtained, the solid acid catalysts appear to serve as effective pretreatment agents and can potentially reduce the use of conventional liquid acids and bases in biomass-into-biofuel production.


2021 ◽  
Author(s):  
Mandana Ehsanipour

This study compared two acidic pretreatments on Source-Separated Organic (SSO) waste preprocessed by Aufbereitungs Technology and System thermal-screw, on the basis of fermentable sugars for bioethanol production. The result showed that the SSO contained on average 27% glucan, 5.4% xylan, 1.2% arabinan, 5.7% mannan and 1.2% galactan. Dilute sulfuric acid pretreatment (at 121°C and 16.2 psi) was insufficient to solubilize cellulose and hemicellulose and did not remove much of the lignin. Cellulose-solvent and Organic Solvent-based Lignocellulose Fractionation (COSLIF) (at 50°C and atmospheric pressure) generated high glucose yield (70%). Substituting ethanol for acetone as organic solvent increased the yield to 89.5%. Fermentation using Zymomonas mobilis 8b with this hydrolysate confirmed the pretreatment is promising for the SSO conversion. Amenability of the SSO for biofuel production is validated. Enzymatic hydrolysis of both pretreatments using Accellerase 1500 is preferred over Celluclast 1.5L due to higher activity. Future work includes design of an appropriate batch and/or continuous bioreactor, and further understanding of Zymomonas mobilis 8b.


2013 ◽  
Vol 133 ◽  
pp. 307-314 ◽  
Author(s):  
Sujit Sadashiv Jagtap ◽  
Saurabh Sudha Dhiman ◽  
Tae-Su Kim ◽  
Jinglin Li ◽  
Jung-Kul Lee ◽  
...  

1984 ◽  
Vol 39 (12) ◽  
pp. 1706-1710 ◽  
Author(s):  
H.-J. Wörz ◽  
E. Quien ◽  
H. P. Latscha

o-Phenylene-bis(dibromophosphane) (1) is prepared by reaction of P ,P,P′,P′-tetrakis(dim ethylamino)-o-phenylenediphosphane with hydrogen bromide in ether. The reaction of o-phenylene- bis(dichlorophosphane) (2) with CH3OH in ether yields o-phenylene-bis(phosphonousacid- dimethylester) (3). The Michaelis-Arbuzov conversion of 3, either by heat or by catalytic amounts of CH3I in toluene, yields ophenylene-bis(methylphosphinic-acid-methylester) (4). The reduction of 2 must be carried out with a large excess of LiAlH4 (1:4) in ether to give o-phenylenediphosphane (5). The cyclic anhydride (6) of P.P′-dichloro-o-phenylenediphosphonous acid is formed when 2 is hydrolyzed in ether with an equimolar amount of water. Complete hydrolysis of 2 with an excess of water gives o-phenylenediphosphonous acid (7). With hydrogen peroxide o-phenylenediphosphonic acid (8) can be isolated.


Sign in / Sign up

Export Citation Format

Share Document