Effects of recycled bentonite addition on soil properties, plant growth and nutrient uptake in a tropical sandy soil

2004 ◽  
Vol 267 (1-2) ◽  
pp. 155-163 ◽  
Author(s):  
J. Croker ◽  
R. Poss ◽  
C. Hartmann ◽  
S. Bhuthorndharaj
2020 ◽  
Vol 8 (12) ◽  
pp. 297-304
Author(s):  
Nattaporn Prakongkep ◽  
◽  
Robert John Gilkes ◽  
Worachart Wisawapipat ◽  
Parapond Leksungnoen ◽  
...  

Sandy soils have limited agricultural production. Farmers try to overcome sandy soil constraints by using various soil amendments. This study aims to evaluate the combined effects of biochar and chemical fertilizer on plant growth and nutrient uptake for sweet corn grown on a sandy soil in a glasshouse experiment. The pot experiment was conducted in a glasshouse at the Land Development Department, Bangkok using a super agro sweet corn variety (Market’s variety) (open pollinated variety) (Zea mays L.) on an Ustic Quartzipsamment at field capacity. The Complete Block Design with 2 replications and 16 treatments included 2 controls, 14 different biochar treatments (eucalyptus wood and rice husk biochars) with and without chemical (N, P and K) fertilizers applied at 1 and 2 times the fertilizer recommendation. The results showed that treatment 16 (rice husk biochar 40 ton ha-1 with chemical fertilizer at 2 times fertilizer recommendation: R40F2) was the best treatment which significantly (p<0.05) increased sweet corn growth and nutrient uptake. Clearly, biochar can increase nutrient uptake and plant yield to the benefit of farmers however biochar does not have sufficient plant nutrient contents to support maximum plant growth. Applying biochar together with chemical fertilizers is the best solution for sandy soils. Keywords: Sweet corn, rice husk biochar, eucalyptus wood biochar, chemical fertilizer, sandy soil.


2022 ◽  
Vol 9 (2) ◽  
pp. 3227-3236
Author(s):  
Yulfita Farni ◽  
Retno Suntari ◽  
Sugeng Prijono

A study on the addition of organic matter of different qualities was carried out to improve plant growth on a degraded sandy soil of Bambang Village, Wajak Malang, East Java. Two potential sources of organic matter in Bambang Village are Tithonia diversifolia and sugarcane leaves. This study aimed at elucidating the changes in some chemical properties of a degraded sandy soil of Malang, East Java, and nutrient uptake and growth of maize plants by applying mixtures of Tithonia diversifolia and sugarcane leaves of different quality. Treatments tested in this study were mixtures of Tithonia diversifolia leaves and sugarcane leaves at various proportions (%w/w), i.e. 100% Tithonia diversifolia leaves (T1), 100% sugarcane leaves (T2), 75% Tithonia diversifolia leaves + 25% sugarcane leaves (T3), 50% Tithonia diversifolia leaves + 50% sugarcane leaves (T4); without organic matters (T6), and control, without organic matter and inorganic fertilizers (T7). The results showed that the application of Tithonia diversifolia and sugarcane leaves affected soil pH, soil exchangeable bases, maize growth, and nutrients uptake. Nutrients taken up by maize plants significantly increased with the addition of Tithonia diversifolia leaves, either alone or in combination with sugarcane leaves. The application of 100% sugarcane leaves did not significantly affect maize growth and nutrient uptake.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhua Shan ◽  
Min Lv ◽  
Wengang Zuo ◽  
Zehui Tang ◽  
Cheng Ding ◽  
...  

AbstractThe most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Sign in / Sign up

Export Citation Format

Share Document