Effect of species, root branching order and season on the root traits of 13 perennial grass species

2011 ◽  
Vol 353 (1-2) ◽  
pp. 47-57 ◽  
Author(s):  
Catherine Picon-Cochard ◽  
Rémi Pilon ◽  
Emilie Tarroux ◽  
Loïc Pagès ◽  
Jean Robertson ◽  
...  
Rhizosphere ◽  
2020 ◽  
Vol 16 ◽  
pp. 100249 ◽  
Author(s):  
Zahida H. Pervaiz ◽  
Janet Contreras ◽  
Brody M. Hupp ◽  
Josh H. Lindenberger ◽  
Dima Chen ◽  
...  

2018 ◽  
Author(s):  
Legay Nicolas ◽  
Grassein Fabrice ◽  
Arnoldi Cindy ◽  
Segura Raphaël ◽  
Laîné Philippe ◽  
...  

AbstractThe leaf economics spectrum (LES) is based on a suite of leaf traits related to plant functioning and ranges from resource-conservative to resource-acquisitive strategies. However, the relationships with root traits, and the associated belowground plant functioning such as N uptake, including nitrate (NO3-) and ammonium (NH4+), is still poorly known. Additionally, environmental variations occurring both in time and in space could uncouple LES from root traits. We explored, in subalpine grasslands, the relationships between leaf and root morphological traits for 3 dominant perennial grass species, and to what extent they contribute to the whole-plant economics spectrum. We also investigated the link between this spectrum and NO3- and NH4+ uptake rates, as well as the variations of uptake across four grasslands differing by the land-use history at peak biomass and in autumn. Although poorly correlated with leaf traits, root traits contributed to an economic spectrum at the whole plant level. Higher NH4+ and NO3- uptake abilities were associated with the resource-acquisitive strategy.Nonetheless, NH4+ and NO3- uptake within species varied between land-uses and with sampling time, suggesting that LES and plant traits are good, but still incomplete, descriptors of plant functioning. Although the NH4+: NO3- uptake ratio was different between plant species in our study, they all showed a preference for NH4+, and particularly the most conservative species. Soil environmental variations between grasslands and sampling times may also drive to some extent the NH4+ and NO3- uptake ability of species. Our results support the current efforts to build a more general framework including above- and below-ground processes when studying plant community functioning.


2016 ◽  
Vol 5 (04) ◽  
pp. 4958
Author(s):  
Dulal De

Hymenachne acutigluma (Steud.) Gilliland, a robust rhizomatous perennial grass spreads on moist and swampy land and also floating in water. Being a grass species, they do not have any cambium for secondary growth. A peculiarity in stem anatomy especially the spongy pith of secondary tissues found in absence of the cambium. The origin and development of the parenchymatous pith tissues has been investigated in the present study. Economically this spongy pith is of very much potent for its high absorbing and filtering capacity and also used as a good fodder.


2004 ◽  
Vol 26 (1) ◽  
pp. 17 ◽  
Author(s):  
R. A. Graham ◽  
S. K. Florentine ◽  
J. E. D. Fox ◽  
T. M. Luong

The paper reports soil seedbank species composition, of Eucalyptus victrix grassy woodlands, of the upper Fortescue River in the Pilbara District, Western Australia. In this study, our objectives were to investigate germinable soil seedbanks and species composition in response to three simulated seasons, using emergence. Variation in seed density from three depths was tested. Four field sites were sampled. Thirty samples were collected in late spring, after seed rain and before summer rainfall. From each sample spot, three soil depths (surface, 1–5, and 6–10 cm) were segregated from beneath surface areas of 100 cm2. Samples were later incubated in a glasshouse to simulate three different seasonal conditions (autumn, winter and spring). Germinating seedlings were recorded on emergence and grown until identified. Forty-one species germinated, comprising 11 grasses (7 annuals and 4 perennials), 25 annual herbs and 5 perennial herbs. Distribution patterns of germinable seed in both the important annual grass Eragrostis japonica and the perennial Eragrostis setifolia (a preferred cattle fodder species), suggest that seedbank accumulation differs among species and between sites. In part, this may be associated with the absence of grazing. Species with most total germinable seed were E. japonica (Poaceae; 603/m2), and the annual herbs Calotis multicaulis (Asteraceae; 346/m2), and Mimulus gracilis (Scrophulariaceae; 168/m2). Perennial grass seed was sparse. Spring simulation gave most germination (1059), followed by autumn (892) and winter (376) sets. Greatest species diversity was produced from the spring simulation (33 species), followed by autumn (26), and winter (22). Of the total germination, 92% came from 17 species that were represented in all three simulations. Of the 1227 grass seedlings counted, most were recruited from the surface soil (735), followed by the 5 (310) and 10 (182) cm depths. Marginally more grass seedlings germinated from the spring simulation (558) than the autumn set (523). Only 11.9% of grass germinants came from the winter simulation. All grass species recruited from the soil seedbanks had a C4 photosynthetic pathway. Except for Cenchrus ciliaris all grass species are native to Australia. Of the four sites sampled, one fenced to exclude cattle five years earlier had significantly more germination than the three unfenced sites. Seedbank sampling produced several new records for plants in the areas sampled.


2020 ◽  
Author(s):  
Dan-Dan Li ◽  
Hong-Wei Nan ◽  
Chun-Zhang Zhao ◽  
Chun-Ying Yin ◽  
Qing Liu

Abstract Aims Competition, temperature, and nutrient are the most important determinants of tree growth in the cold climate on the eastern Tibetan Plateau. Although many studies have reported their individual effects on tree growth, little is known about how the interactions of competition with fertilization and temperature affect root growth. We aim to test whether climate warming and fertilization promote competition and to explore the functional strategies of Picea asperata in response to the interactions of these factors. Methods We conducted a paired experiment including competition and non-competition treatments under elevated temperature (ET) and fertilization. We measured root traits, including the root tip number over the root surface (RTRS), the root branching events over the root surface (RBRS), the specific root length (SRL), the specific root area (SRA), the total fine root length and area (RL and RA), the root tips (RT) and root branching events (RB). These root traits are considered to be indicators of plant resource uptake capacity and root growth. The root biomass and the nutrient concentrations in the roots were also determined. Important Findings The results indicated that ET, fertilization and competition individually enhanced the nitrogen (N) and potassium (K) concentrations in fine roots, but they did not affect fine root biomass or root traits, including RL, RT, RA and RB. However, both temperature and fertilization, as well as their interaction, interacting with competition increased RL, RA, RT, RB, and nutrient uptake. In addition, the SRL, SRA, RTRS and RBRS decreased under fertilization, the interaction between temperature and competition decreased SRL and SRA, while the other parameters were not affected by temperature or competition. These results indicate that Picea asperata maintains a conservative nutrient strategy in response to competition, climate warming, fertilization, and their interactions. Our results improve our understanding of the physiological and ecological adaptability of trees to global change.


2010 ◽  
Vol 135 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Qi Chai ◽  
Fang Jin ◽  
Emily Merewitz ◽  
Bingru Huang

The objective of this study was to determine physiological traits for drought survival and post-drought recovery upon re-watering in two C3 perennial grass species, kentucky bluegrass [KBG (Poa pratensis)] and perennial ryegrass [PRG (Lolium perenne)]. Plants were maintained well watered or exposed to drought stress by withholding irrigation and were then re-watered in a growth chamber. KBG had significantly higher grass quality and leaf photochemical efficiency, and lower electrolyte leakage than PRG during 20 days of drought. After 7 days of re-watering, drought-damaged leaves were rehydrated to the control level in KBG, but could not fully recover in PRG. KBG produced a greater number of new roots, while PRG had more rapid elongation of new roots after 16 days of re-watering. Superior drought tolerance in KBG was associated with osmotic adjustment, higher cell wall elasticity, and lower relative water content at zero turgor. Osmotic adjustment, cell wall elasticity, and cell membrane stability could play important roles in leaf desiccation tolerance and drought survival in perennial grass species. In addition, post-drought recovery of leaf hydration level and physiological activity could be associated with the accumulation of carbohydrates in leaves and rhizomes during drought stress and new root production after re-watering.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1538
Author(s):  
Lijun Xu ◽  
Qian Liu ◽  
Yingying Nie ◽  
Feng Li ◽  
Guixia Yang ◽  
...  

Integration of perennial grass species into the current food production systems, especially in the agropastoral regions worldwide, may produce multiple benefits including, among others, a more stable productivity and a smaller eco-environmental footprint. However, one of the fundamental challenges facing the large-scale adoption of such grass species is their ability to withstand the vagaries of winter in these regions. Here, we present a comprehensive evaluation of the winter hardiness of 50 indigenous Chinese cultivars of alfalfa, a high-quality leguminous perennial grass, in comparison with six introduced U.S. cultivars in a multi-site field experiment in northern China. Our results reveal that indigenous cultivars have stronger winter hardiness than introduced cultivars. Cultivars native in the north performed better than southern cultivars, suggesting that suitability evaluation is an unavoidable step proceeding any regional implementations. Our results also show that the metric we used to assess alfalfa’s winter hardiness, the average score index (ASI), produced more consistent results than another more-widely used metric of winter survival rate (WSR). These findings offer a systematic field evidence that supports regional cropping system adjustment and production system betterment to ensure food security under climate change in the region and beyond.


2016 ◽  
Vol 16 ◽  
pp. 275-279
Author(s):  
E.J. Hall ◽  
R. Reid ◽  
B. Clark ◽  
R. Dent

In response to the need to find better adapted and more persistent perennial pasture plants for the dryland pastures in the cool-temperate low to medium rainfall (500-700 mm) regions, over 1000 accessions representing 24 species of perennial legumes and 64 species of perennial grasses, were introduced, characterised and evaluated for production and persistence under sheep grazing at sites throughout Tasmania. The work has identified four alternative legume species in Talish Clover (Trifolium tumens). Caucasian Clover (T. ambiguum), Stoloniferous Red Clover (T. pratense var. stoloniferum), Lucerne x Yellow Lucerne Hybrid (Medicago sativa x M.sativa subsp. falcata); and two grass species in Coloured Brome (Bromus coloratus) and Hispanic Cocksfoot (Dactylis glomerata var hispanica). Keywords: persistence, perennial grass, perennial legume


Sign in / Sign up

Export Citation Format

Share Document