Grazing and enclosure alter the vertical distribution of organic nitrogen pools and bacterial communities in semiarid grassland soils

2019 ◽  
Vol 439 (1-2) ◽  
pp. 525-539 ◽  
Author(s):  
Huanhe Wang ◽  
Jiangye Li ◽  
Qichun Zhang ◽  
Jun Liu ◽  
Bo Yi ◽  
...  
2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Andrea Di Cesare ◽  
Ester M Eckert ◽  
Camille Cottin ◽  
Agnès Bouchez ◽  
Cristiana Callieri ◽  
...  

ABSTRACT Lakes are exposed to anthropogenic pollution including the release of allochthonous bacteria into their waters. Antibiotic resistance genes (ARGs) stabilize in bacterial communities of temperate lakes, and these environments act as long-term reservoirs of ARGs. Still, it is not clear if the stabilization of the ARGs is caused by a periodical introduction, or by other factors regulated by dynamics within the water column. Here we observed the dynamics of the tetracycline resistance gene (tetA) and of the class 1 integron integrase gene intI1 a proxy of anthropogenic pollution in the water column and in the sediments of subalpine Lake Maggiore, together with several chemical, physical and microbiological variables. Both genes resulted more abundant within the bacterial community of the sediment compared to the water column and the water-sediment interface. Only at the inset of thermal stratification they reached quantifiable abundances in all the water layers, too. Moreover, the bacterial communities of the water-sediment interface were more similar to deep waters than to the sediments. These results suggest that the vertical distribution of tetA and intI1 is mainly due to the deposition of bacteria from the surface water to the sediment, while their resuspension from the sediment is less important.


Tellus B ◽  
2011 ◽  
Vol 63 (1) ◽  
Author(s):  
Abhay Devasthale ◽  
Michael Tjernström ◽  
Karl-Göran Karlsson ◽  
Manu Anna Thomas ◽  
Colin Jones ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katie E. Miles ◽  
Bryn Hubbard ◽  
Evan S. Miles ◽  
Duncan J. Quincey ◽  
Ann V. Rowan ◽  
...  

AbstractSurface melting of High Mountain Asian debris-covered glaciers shapes the seasonal water supply to millions of people. This melt is strongly influenced by the spatially variable thickness of the supraglacial debris layer, which is itself partially controlled by englacial debris concentration and melt-out. Here, we present measurements of deep englacial debris concentrations from debris-covered Khumbu Glacier, Nepal, based on four borehole optical televiewer logs, each up to 150 m long. The mean borehole englacial debris content is ≤ 0.7% by volume in the glacier’s mid-to-upper ablation area, and increases to 6.4% by volume near the terminus. These concentrations are higher than those reported for other valley glaciers, although those measurements relate to discrete samples while our approach yields a continuous depth profile. The vertical distribution of englacial debris increases with depth, but is also highly variable, which will complicate predictions of future rates of surface melt and debris exhumation at such glaciers.


2021 ◽  
Vol 42 (17) ◽  
pp. 6421-6436
Author(s):  
Sourita Saha ◽  
Som Sharma ◽  
K. Niranjan Kumar ◽  
Prashant Kumar ◽  
Vaidehi Joshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document