An extension of the Kakutani–Bohnenblust characterization of $$L^p$$-spaces to $$p\in (0,\infty )$$
Abstract For $$p\in [1,\infty )$$ p ∈ [ 1 , ∞ ) , S. Kakutani and H.F. Bohnenblust have given characterizations of $$L^p$$ L p as a Banach lattice. We generalize that result to $$p\in (0,\infty )$$ p ∈ ( 0 , ∞ ) . In particular, we show that a quasi-Banach lattice "Equation missing" that satisfies $$\rfloor \negthickspace \rfloor u+v\lfloor \negthickspace \lfloor ^p=\rfloor \negthickspace \rfloor u\lfloor \negthickspace \lfloor ^p +\rfloor \negthickspace \rfloor v\lfloor \negthickspace \lfloor ^p$$ ⌋ ⌋ u + v ⌊ ⌊ p = ⌋ ⌋ u ⌊ ⌊ p + ⌋ ⌋ v ⌊ ⌊ p if $$u\wedge v =0$$ u ∧ v = 0 , is isometrically Riesz isomorphic to $$L^p$$ L p .
1987 ◽
Vol 30
(3)
◽
pp. 397-400
◽
Keyword(s):
1995 ◽
Vol 18
(1-3)
◽
pp. 131-140
◽
1995 ◽
Vol 37
(1)
◽
pp. 65-67
◽
Keyword(s):
1983 ◽
Vol 26
(1)
◽
pp. 63-69
◽
1987 ◽
Vol 43
(1)
◽
pp. 35-46
Keyword(s):
1974 ◽
Vol 32
◽
pp. 254-255
1983 ◽
Vol 41
◽
pp. 270-271
1973 ◽
Vol 31
◽
pp. 144-145
1973 ◽
Vol 31
◽
pp. 132-133
◽