scholarly journals Dimension formula for induced maximal faces of separable states and genuine entanglement

2015 ◽  
Vol 14 (9) ◽  
pp. 3335-3350 ◽  
Author(s):  
Lin Chen ◽  
Dragomir Ž. Ɖoković
2019 ◽  
Vol 19 (04) ◽  
pp. 2050061
Author(s):  
Lorenzo Guerrieri

Let [Formula: see text] be a regular local ring of dimension [Formula: see text]. A local monoidal transform of [Formula: see text] is a ring of the form [Formula: see text], where [Formula: see text] is a regular parameter, [Formula: see text] is a regular prime ideal of [Formula: see text] and [Formula: see text] is a maximal ideal of [Formula: see text] lying over [Formula: see text] In this paper, we study some features of the rings [Formula: see text] obtained as infinite directed union of iterated local monoidal transforms of [Formula: see text]. In order to study when these rings are GCD domains, we also provide results in the more general setting of directed unions of GCD domains.


1995 ◽  
Vol 09 (12) ◽  
pp. 1429-1451 ◽  
Author(s):  
WŁODZIMIERZ SALEJDA

The microscopic harmonic model of lattice dynamics of the binary chains of atoms is formulated and studied numerically. The dependence of spring constants of the nearest-neighbor (NN) interactions on the average distance between atoms are taken into account. The covering fractal dimensions [Formula: see text] of the Cantor-set-like phonon spec-tra (PS) of generalized Fibonacci and non-Fibonaccian aperiodic chains containing of 16384≤N≤33461 atoms are determined numerically. The dependence of [Formula: see text] on the strength Q of NN interactions and on R=mH/mL, where mH and mL denotes the mass of heavy and light atoms, respectively, are calculated for a wide range of Q and R. In particular we found: (1) The fractal dimension [Formula: see text] of the PS for the so-called goldenmean, silver-mean, bronze-mean, dodecagonal and Severin chain shows a local maximum at increasing magnitude of Q and R>1; (2) At sufficiently large Q we observe power-like diminishing of [Formula: see text] i.e. [Formula: see text], where α=−0.14±0.02 and α=−0.10±0.02 for the above specified chains and so-called octagonal, copper-mean, nickel-mean, Thue-Morse, Rudin-Shapiro chain, respectively.


AIP Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 045020 ◽  
Author(s):  
P. A. Deymier ◽  
K. Runge

Fractals ◽  
2010 ◽  
Vol 18 (04) ◽  
pp. 461-476 ◽  
Author(s):  
PRADEEP R. NAIR ◽  
MUHAMMAD A. ALAM

Historically, fractal analysis has been remarkably successful in describing wide ranging kinetic processes on (idealized) scale invariant objects in terms of elegantly simple universal scaling laws. However, as nanostructured materials find increasing applications in energy storage, energy conversion, healthcare, etc., one must reexamine the premise of traditional fractal scaling laws as it only applies to physically unrealistic infinite systems, while all natural/engineered systems are necessarily finite. In this article, we address the consequences of the 'finite-size' problem in the context of time dependent diffusion towards fractal surfaces via the novel technique of Cantor-transforms to (i) illustrate how finiteness modifies its classical scaling exponents; (ii) establish that for finite systems, the diffusion-limited reaction is decelerated below a critical dimension [Formula: see text] and accelerated above it; and (iii) to identify the crossover size-limits beyond which a finite system can be considered (practically) infinite and redefine the very notion of 'finiteness' of fractals in terms of its kinetic response. Our results have broad implications regarding dynamics of systems defined by the same fractal dimension, but differentiated by degree of scaling iteration or morphogenesis, e.g. variation in lung capacity between a child and adult.


2014 ◽  
Vol 14 (11&12) ◽  
pp. 937-948
Author(s):  
Eylee Jung ◽  
DaeKil Park

In this paper we analyze entanglement classification of relaxed Greenberger-Horne-Zeilinger-symmetric states $\rho^{ES}$, which is parametrized by four real parameters $x$, $y_1$, $y_2$ and $y_3$. The condition for separable states of $\rho^{ES}$ is analytically derived. The higher classes such as bi-separable, W, and Greenberger-Horne-Zeilinger classes are roughly classified by making use of the class-specific optimal witnesses or map from the relaxed Greenberger-Horne-Zeilinger symmetry to the Greenberger-Horne-Zeilinger symmetry. From this analysis we guess that the entanglement classes of $\rho^{ES}$ are not dependent on $y_j \hspace{.2cm} (j=1,2,3)$ individually, but dependent on $y_1 + y_2 + y_3$ collectively. The difficulty arising in extension of analysis with Greenberger-Horne-Zeilinger symmetry to the higher-qubit system is discussed.


1988 ◽  
Vol 111 ◽  
pp. 115-129 ◽  
Author(s):  
Yoshio Tanigawa ◽  
Hirofumi Ishikawa

The purpose of this paper is to study the dimension formula for cusp forms of weight one, following the series of Hiramatsu [2] and Hiramatsu-Akiyama [3]. We define as usual the subgroup Γ0(N) of SL2(Z) by.


Author(s):  
Joseph Wilson ◽  
Matt Visser

We present a compact Baker–Campbell–Hausdorff–Dynkin formula for the composition of Lorentz transformations [Formula: see text] in the spin representation (a.k.a. Lorentz rotors) in terms of their generators [Formula: see text]: [Formula: see text] This formula is general to geometric algebras (a.k.a. real Clifford algebras) of dimension [Formula: see text], naturally generalizing Rodrigues’ formula for rotations in [Formula: see text]. In particular, it applies to Lorentz rotors within the framework of Hestenes’ spacetime algebra, and provides an efficient method for composing Lorentz generators. Computer implementations are possible with a complex [Formula: see text] matrix representation realized by the Pauli spin matrices. The formula is applied to the composition of relativistic 3-velocities yielding simple expressions for the resulting boost and the concomitant Wigner angle.


2012 ◽  
Vol 204-208 ◽  
pp. 1923-1928
Author(s):  
Bo Tan ◽  
Rui Hua Yang ◽  
Yan Ting Lai

The paper presents the fractal dimension formula of distribution of asphalt mixture aggregate diameter by the deducing mass fractal characteristics function. Taking AC-20 and SMA-20 as examples, selected 6 groups of representative grading curves within the grading envelope proposed by the present specification, and calculated their fractal dimensions. The asphalt mixture gradation has fractal dimension D (D∈(1,3)), and the fractal of continuous gradation is single while the fractal of gap-gradation shows multi-fractal with 4.75 as the dividing point. Fractal dimension of aggregate gradation of asphalt mixture reflect the structure characteristics of aggregate distribution, that is, finer is aggregate, bigger is the fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document