h-Index-based link prediction methods in citation network

2018 ◽  
Vol 117 (1) ◽  
pp. 381-390 ◽  
Author(s):  
Wen Zhou ◽  
Jiayi Gu ◽  
Yifan Jia
Author(s):  
Gogulamudi Naga Chandrika ◽  
E. Srinivasa Reddy

<p><span>Social Networks progress over time by the addition of new nodes and links, form associations with one community to the other community. Over a few decades, the fast expansion of Social Networks has attracted many researchers to pay more attention towards complex networks, the collection of social data, understand the social behaviors of complex networks and predict future conflicts. Thus, Link prediction is imperative to do research with social networks and network theory. The objective of this research is to find the hidden patterns and uncovered missing links over complex networks. Here, we developed a new similarity measure to predict missing links over social networks. The new method is computed on common neighbors with node-to-node distance to get better accuracy of missing link prediction. </span><span>We tested the proposed measure on a variety of real-world linked datasets which are formed from various linked social networks. The proposed approach performance is compared with contemporary link prediction methods. Our measure makes very effective and intuitive in predicting disappeared links in linked social networks.</span></p>


Author(s):  
Bornali Phukon ◽  
Akash Anil ◽  
Sanasam Ranbir Singh ◽  
Priyankoo Sarmah

WordNets built for low-resource languages, such as Assamese, often use the expansion methodology. This may result in missing lexical entries and missing synonymy relations. As the Assamese WordNet is also built using the expansion method, using the Hindi WordNet, it also has missing synonymy relations. As WordNets can be visualized as a network of unique words connected by synonymy relations, link prediction in complex network analysis is an effective way of predicting missing relations in a network. Hence, to predict the missing synonyms in the Assamese WordNet, link prediction methods were used in the current work that proved effective. It is also observed that for discovering missing relations in the Assamese WordNet, simple local proximity-based methods might be more effective as compared to global and complex supervised models using network embedding. Further, it is noticed that though a set of retrieved words are not synonyms per se, they are semantically related to the target word and may be categorized as semantic cohorts.


2020 ◽  
Vol 31 (11) ◽  
pp. 2050158
Author(s):  
Xiang-Chun Liu ◽  
Dian-Qing Meng ◽  
Xu-Zhen Zhu ◽  
Yang Tian

Link prediction based on node similarity has become one of the most effective prediction methods for complex network. When calculating the similarity between two unconnected endpoints in link prediction, most scholars evaluate the influence of endpoint based on the node degree. However, this method ignores the difference in contribution of neighbor (NC) nodes for endpoint. Through abundant investigations and analyses, the paper quantifies the NC nodes to endpoint, and conceives NC Index to evaluate the endpoint influence accurately. Extensive experiments on 12 real datasets indicate that our proposed algorithm can increase the accuracy of link prediction significantly and show an obvious advantage over traditional algorithms.


Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 12 ◽  
Author(s):  
Guangluan Xu ◽  
Xiaoke Wang ◽  
Yang Wang ◽  
Daoyu Lin ◽  
Xian Sun ◽  
...  

Link prediction is a task predicting whether there is a link between two nodes in a network. Traditional link prediction methods that assume handcrafted features (such as common neighbors) as the link’s formation mechanism are not universal. Other popular methods tend to learn the link’s representation, but they cannot represent the link fully. In this paper, we propose Edge-Nodes Representation Neural Machine (ENRNM), a novel method which can learn abundant topological features from the network as the link’s representation to promote the formation of the link. The ENRNM learns the link’s formation mechanism by combining the representation of edge and the representations of nodes on the two sides of the edge as link’s full representation. To predict the link’s existence, we train a fully connected neural network which can learn meaningful and abundant patterns. We prove that the features of edge and two nodes have the same importance in link’s formation. Comprehensive experiments are conducted on eight networks, experiment results demonstrate that the method ENRNM not only exceeds plenty of state-of-the-art link prediction methods but also performs very well on diverse networks with different structures and characteristics.


2019 ◽  
Vol 527 ◽  
pp. 121184
Author(s):  
Zhenbao Wang ◽  
Yuxin Wang ◽  
Jinming Ma ◽  
Wenya Li ◽  
Ning Chen ◽  
...  

2017 ◽  
Vol 31 (02) ◽  
pp. 1650254 ◽  
Author(s):  
Shuxin Liu ◽  
Xinsheng Ji ◽  
Caixia Liu ◽  
Yi Bai

Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.


Sign in / Sign up

Export Citation Format

Share Document