scholarly journals Observations of the Solar Corona from Space

2020 ◽  
Vol 216 (8) ◽  
Author(s):  
Ester Antonucci ◽  
Louise Harra ◽  
Roberto Susino ◽  
Daniele Telloni

AbstractSpace observations of the atmosphere of the Sun, obtained in half a century of dedicated space missions, provide a well established picture of the medium and large-scale solar corona, which is highly variable with the level of solar activity through a solar cycle and evolves with the long-term evolution of the magnetic cycles. In this review, we summarize the physical properties and dynamics of the medium and large-scale corona, consisting primarily of active regions, streamers and coronal holes; describe the dependence of coronal patterns on the magnetic field patterns changing through the solar cycle and the properties of the regions of open magnetic flux channeling the solar wind; the ubiquitous presence of fluctuations in the outer corona; the rotational properties of the large-scale corona; and the persistent hemispheric asymmetries in the emergence of magnetic fields and the distribution of the coronal emission.

1980 ◽  
Vol 5 ◽  
pp. 549-556
Author(s):  
Jack B. Zirker

The solar corona serves as a prototype of the outer atmospheres of all cool stars. Because of its nearness we can study this prototype in more detail than any other example. Considerable progress has been made recently in understanding how the large scale structure of the solar corona controls the genesis of the solar wind and the distribution of slow and fast wind streams throughout the three-dimensional space surrounding the sun. In this review we will discuss some of the progress made in this field during the last few years. We will emphasize the observational data and the inferences that can be made more or less directly from them. T. Holzer will discuss the theoretical aspects of stellar wind acceleration in another paper in this symposium.The large scale structures of the solar corona consist essentially of three kinds: streamers, active regions and coronal holes. Figure 1 is a familiar photograph of the solar corona, obtained in white light at the total eclipse of 30 June 1973 by the High Altitude Observatory. The streamers are the petal-like structures extending out from the black lunar limb. They taper to narrow radial spikes that have been traced out as far as 10-12 solar radii (Keller, 1979). Daily measurements of the white light corona at the Mauna Loa Observatory (Hundhausen et al. 1979) and the Pic-du-Midi Observatory (Dollfus et al., 1977) since 1965 show that the streamers are fan-shaped structures that may extend 120° in solar longitude. We see them in various perspectives at the solar limb.


2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


2020 ◽  
Vol 642 ◽  
pp. A233
Author(s):  
R. Sharma ◽  
C. Cid

Context. Active regions in close proximity to coronal holes, also known as anemone regions, are the best candidates for studying the interaction between closed and open magnetic field topologies at the Sun. Statistical investigation of their source-region characteristics can provide vital clues regarding their possible association with energetic events, relevant from space weather perspectives. Aims. The main goal of our study is to understand the distinct properties of flaring and non-flaring anemone active regions and their host coronal holes, by examining spatial and magnetic field distributions during the rise phase of the solar cycle, in the years 2011–2014. Methods. Anemone regions were identified from the minimum-distance threshold, estimated using the data available in the online catalogs for on-disk active regions and coronal holes. Along with the source-region area and magnetic field characteristics, associated filament and flare cases were also located. Regions with and without flare events were further selected for a detailed statistical examination to understand the major properties of the energetic events, both eruptive and confined, at the anemone-type active regions. Results. Identified anemone regions showed weak asymmetry in their spatial distribution over the solar disk, with yearly average independent from mean sunspot number trend, during the rise phase of solar cycle 24. With the progression in solar cycle, the area and minimum-distance parameters indicated a decreasing trend in their magnitudes, while the magnetic field characteristics indicated an increase in their estimated magnitudes. More than half of the regions in our database had an association with a filament structure, and nearly a third were linked with a magnetic reconnection (flare) event. Anemone regions with and without flares had clear distinctions in their source-region characteristics evident from the distribution of their properties and density analysis. The key differences included larger area and magnetic field magnitudes for flaring anemone regions, along with smaller distances between the centers of the active region and its host coronal hole.


2016 ◽  
Vol 12 (S328) ◽  
pp. 93-100 ◽  
Author(s):  
Sarah E. Gibson ◽  
David Webb ◽  
Ian M. Hewins ◽  
Robert H. McFadden ◽  
Barbara A. Emery ◽  
...  

AbstractIn 1964 (Solar Cycle 20; SC 20), Patrick McIntosh began creating hand-drawn synoptic maps of solar magnetic features, based on Hα images. These synoptic maps were unique in that they traced magnetic polarity inversion lines, and connected widely separated filaments, fibril patterns, and plage corridors to reveal the large-scale organization of the solar magnetic field. Coronal hole boundaries were later added to the maps, which were produced, more or less continuously, into 2009 (i.e., the start of SC 24). The result was a record of ~45 years (~570 Carrington rotations), or nearly four complete solar cycles of synoptic maps. We are currently scanning, digitizing and archiving these maps, with the final, searchable versions publicly available at NOAA's National Centers for Environmental Information. In this paper we present preliminary scientific studies using the archived maps from SC 23. We show the global evolution of closed magnetic structures (e.g., sunspots, plage, and filaments) in relation to open magnetic structures (e.g., coronal holes), and examine how both relate to the shifting patterns of large-scale positive and negative polarity regions.


2019 ◽  
Vol 627 ◽  
pp. A11
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
L. Bertello ◽  
A. Yeates ◽  
...  

Aims. The evolution of the photospheric magnetic field has only been regularly observed since the 1970s. The absence of earlier observations severely limits our ability to understand the long-term evolution of solar magnetic fields, especially the polar fields that are important drivers of space weather. Here, we test the possibility to reconstruct the large-scale solar magnetic fields from Ca II K line observations and sunspot magnetic field observations, and to create synoptic maps of the photospheric magnetic field for times before modern-time magnetographic observations. Methods. We reconstructed active regions from Ca II K line synoptic maps and assigned them magnetic polarities using sunspot magnetic field observations. We used the reconstructed active regions as input in a surface flux transport simulation to produce synoptic maps of the photospheric magnetic field. We compared the simulated field with the observed field in 1975−1985 in order to test and validate our method. Results. The reconstruction very accurately reproduces the long-term evolution of the large-scale field, including the poleward flux surges and the strength of polar fields. The reconstruction has slightly less emerging flux because a few weak active regions are missing, but it includes the large active regions that are the most important for the large-scale evolution of the field. Although our reconstruction method is very robust, individual reconstructed active regions may be slightly inaccurate in terms of area, total flux, or polarity, which leads to some uncertainty in the simulation. However, due to the randomness of these inaccuracies and the lack of long-term memory in the simulation, these problems do not significantly affect the long-term evolution of the large-scale field.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


2012 ◽  
Vol 8 (S294) ◽  
pp. 157-158
Author(s):  
Shangbin Yang ◽  
Hongqi Zhang

AbstractTo investigate the characteristics of large scale and long term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking (LCT) to estimate the magnetic helicity evolution over the 23rd solar cycle from 1996 to 2009 by using 795 MDI magnetic synoptic charts. The main results are: the hemispheric helicity rule still holds in general, i.e. the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large scale magnetic helicity flux over the solar disk changes from negative value at the beginning of the 23rd solar cycle to positive value at the end of the cycle, which also shows the similar trend from the normalized magnetic flux by using the magnetic flux. The net accumulated magnetic helicity is negative in the period between 1996 and 2009.


2021 ◽  
Author(s):  
Juliana Jaen ◽  
Toralf Renkwitz ◽  
Jorge L. Chau ◽  
Maosheng He ◽  
Peter Hoffmann ◽  
...  

Abstract. Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (~54 °N) and northern Norway (~69 °N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower thermosphere summer length (MLT-SL) using SMR and PRR winds, and (2) the mesosphere summer length (M-SL) using PRR and MLS. Under both definitions, the summer begins around April and ends around mid-September. The largest year to year variability is found in the summer beginning in both definitions, particularly at high-latitudes, possibly due to the influence of the polar vortex. At high-latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL, as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity, as well as large-scale atmospheric influences (e.g. quasi-biennial oscillations (QBO), El Niño-southern oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at mid-latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.


1974 ◽  
Vol 57 ◽  
pp. 73-83 ◽  
Author(s):  
V. Bumba ◽  
J. Sýkora

In the first part of our communication, in a short summary of our recent results, it is demonstrated that over the last 15 years (the time interval for which the magnetic synoptic charts are available) the largest solar activity, usually connected with proton-flare occurrence, has been very closely related to a characteristic large-scale pattern in the magnetic field distribution with a life-time of the order of 8–10 solar rotations. These regular features are seen in the negative as well as in the positive polarity, although they can be seen better in the negative polarity where their forms are more pronounced, regardless of the activity cycle. The form alternates with the location in the northern or the southern solar hemispheres due to the mutual relations of both polarities, individual active regions, the influence of the differential rotations, the shift in longitude, etc. This pattern could be observed up to the large August 1972 proton-flare activity.The large-scale magnetic patterns described are accompanied by characteristic large-scale features in the green (λ 5303) coronal emission, presented in the form of isophotes on the synoptic charts (reduced to a unified photometric scale).In the second part of the presentation, preliminary results, concerning the correlation of the longitudinal distribution of the green coronal emission with the negative and the positive polarity fields for two time intervals (August 1960–September 1961 and January 1969–December 1969) are described. The existence of two ‘coronal active longitudes’ in both intervals, as well as the close relation of these longitudinal emission maxima to certain parts of the large-scale characteristic bodies of negative polarity, is discussed. Also, the existence of one heliographic longitude, connected with ‘coronal holes’ (minimal green corona emission), and its relation to the positive polarity large-scale pattern are proved.


2019 ◽  
Vol 627 ◽  
pp. A9 ◽  
Author(s):  
C. Sasso ◽  
R. F. Pinto ◽  
V. Andretta ◽  
R. A. Howard ◽  
A. Vourlidas ◽  
...  

The magnetic field shapes the structure of the solar corona, but we still know little about the interrelationships between the coronal magnetic field configurations and the resulting quasi-stationary structures observed in coronagraphic images (such as streamers, plumes, and coronal holes). One way to obtain information on the large-scale structure of the coronal magnetic field is to extrapolate it from photospheric data and compare the results with coronagraphic images. Our aim is to verify whether this comparison can be a fast method to systematically determine the reliability of the many methods that are available for modeling the coronal magnetic field. Coronal fields are usually extrapolated from photospheric measurements that are typically obtained in a region close to the central meridian on the solar disk and are then compared with coronagraphic images at the limbs, acquired at least seven days before or after to account for solar rotation. This implicitly assumes that no significant changes occurred in the corona during that period. In this work, we combine images from three coronagraphs (SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) that observe the Sun from different viewing angles to build Carrington maps that cover the entire corona to reduce the effect of temporal evolution to about five days. We then compare the position of the observed streamers in these Carrington maps with that of the neutral lines obtained from four different magnetic field extrapolations to evaluate the performances of the latter in the solar corona. Our results show that the location of coronal streamers can provide important indications to distinguish between different magnetic field extrapolations.


Sign in / Sign up

Export Citation Format

Share Document