Methods and Findings of Stress–strain State and Strength Analyses of Multilayer Thick-Walled Anisotropic Cylinders under Dynamic Loading (Review). Part 3. Phenomenological Strength Criteria

2013 ◽  
Vol 45 (3) ◽  
pp. 271-283 ◽  
Author(s):  
P. P. Lepikhin ◽  
V. A. Romashchenko
Author(s):  
V. I. Tarichko ◽  
P. I. Shalupina

The paper focuses on a method for assessing the dynamic loading of the frame of a special wheeled chassis when it moves on roads of various categories. Based on the developed finite element model of the frame, we obtained and analyzed full-size patterns of the stress-strain state of the frame and oscillograms of equivalent stresses in the most loaded zones of the frame.


Author(s):  
Andrey Grabovskiy ◽  
Iryna Hrechka ◽  
Mykola M. Tkachuk ◽  
Mariia Saverska ◽  
Serhii Kutsenko ◽  
...  

Elements of constructions of modern military and civil vehicles usually work in conditions of high contact loads. Аt the stage of their creation, strength studies are carried out using traditional models of contact of bodies of nominal shape. Нowever, the real structural elements have deviations from such models, which are due to design and technological factors: macrodeviation of the shape, surface roughness, strengthening etc. Such perturbations of nominal parameters have a significant effect on the distribution of contact pressure between the elements of military and civil vehicles, however, traditional methods for studying the stress-strain state of contacting bodies do not make it possible to take such factors into account fully, collectively and exhaustively. To eliminate the existing contradiction, a semi-analytical method is proposed, which is based on the development of variational principles and boundary-element sampling. The created models make it possible to take into account the regularities of the influence of shape perturbations and properties of the surface layers of contacting bodies on the stress-strain state. As a result, it becomes possible to justify favorable perturbations by strength criteria. Such models and methods are offered to the work, and on their basis it’s proposed the implementation of research elements of military and civil vehicles for appointment to ensure world class the technical and tactically technical characteristics. Ключові слова: military and civilian vehicles; design and technological factor; stress-strain state; contact interaction; strength


2021 ◽  
Vol 280 ◽  
pp. 01008
Author(s):  
Natalya Remez ◽  
Alina Dychko ◽  
Vadym Bronytskyi ◽  
Tetiana Hrebeniuk ◽  
Rafael Bambirra Pereira ◽  
...  

The paper provides numerical simulation of the influence of dynamic loading on the stress-strain state of the natural and geoengineering technogenic environment taking into account the soil basis for forecasting its use as the basis of the structure. Paper demonstrates the impact of static and dynamic loading on the subsidence of the landfill. To take into account the liquid phase of the waste and the viscoplastic medium, Darcy's law is used as an equation of balance of forces. The body of the landfill is modeled by weak soil taking into account the creep, using the Soft Soil Creep model. The covering and underlying soil layers are described by the Coulomb – Mohr model. An effective method for calculating the sedimentation of natural and geoengineering environment on the example of a solid waste landfill, based on numerical modeling of the stress-strain state of the landfill and underlying soil using finite elements is developed. It is demonstrated that the largest subsidence is experienced by the landfill with sand, as the base soil, but in percentage terms the amount of subsidence with the maximum load relative to the initial subsidence without loading is the largest in clay (33.7%). The obtained results must be taken into account when using landfills as a basis for buildings, structures, routes, recreational areas, etc.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document