Power Law of Crack Length Distribution in the Multiple Damage Process

2019 ◽  
Vol 51 (5) ◽  
pp. 735-745 ◽  
Author(s):  
S. R. Ignatovich ◽  
N. I. Bouraou
2004 ◽  
Vol 261-263 ◽  
pp. 1055-1060 ◽  
Author(s):  
Kazushi Sato ◽  
Toshiyuki Hashida

In this paper, cracking behavior of distributed microcracks is discussed using a numerical simulation. The microcracks are initially distributed in a rectangle region. The directions and locations of the cracks are chosen at random. Three kinds of length distributions are used, such as a uniform length, a random length distribution and a fractal length distribution. The crack propagations from the initially distributed cracks are analyzed under a uniaxial tensile load using liner elastic fracture mechanics. The global behaviors of various crack distribution are studied. Results obtained from the numerical calculations indicate that the effect of the crack length distribution is minor in term of the macroscopic behavior of the cracked body.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950057 ◽  
Author(s):  
TONGJUN MIAO ◽  
SUJUN CHENG ◽  
AIMIN CHEN ◽  
YAN XU ◽  
GUANG YANG ◽  
...  

Fractures with power law length distributions abound in nature such as carbonate oil and gas reservoirs, sandstone, hot dry rocks, etc. The fluid transport properties and morphology characterization of fracture networks have fascinated numerous researchers to investigate for several decades. In this work, the analytical models for fracture density and permeability are extended from fractal fracture network to general fracture network with power law length distributions. It is found that the fracture density is related to the power law exponents [Formula: see text] and the area porosity [Formula: see text] of fracture network. Then, a permeability model for the fracture length distribution with general power law exponent [Formula: see text] and the power law exponent [Formula: see text] for fracture length versus aperture is proposed based on the well-known cubic law in individual fracture. The analytical expression for permeability of fractured networks is found to be a function of power law exponents [Formula: see text], area porosity [Formula: see text] of fracture network, and the micro-structural parameters (maximum fracture length [Formula: see text], fracture azimuth [Formula: see text] and fracture dip angle [Formula: see text]). The present model may shed light on the mechanism of seepage in fracture networks with power law length distributions.


2019 ◽  
Vol 10 (5) ◽  
pp. 644-659
Author(s):  
Feizal Yusof ◽  
Karh Heng Leong

Purpose Crack tip stresses are used to relate the ability of structures to perform under the influence of cracks and defects. One of the methods to determine three-dimensional crack tip stresses is through the J-Tz method. The J-Tz method has been used extensively to characterize the stresses of cracked geometries that demonstrate positive T-stress but limited in characterizing negative T-stresses. The purpose of this paper is to apply the J-Tz method to characterize a three-dimensional crack tip stress field in a changing crack length from positive to negative T-stress geometries. Design/methodology/approach Elastic-plastic crack border fields of deep and shallow cracks in tension and bending loads were investigated through a series of three-dimensional finite element (FE) and analytical J-Tz solutions for a range of crack lengths ranging from 0.1⩽a/W⩽0.5 for two thickness extremes of B/(W − a)=1 and 0.05. Findings Both the FE and the J-Tz approaches showed that the combined in-plane and the out-of-plane constraint loss were differently affected by the T-stress and the out-of-plane size effects when the crack length changed from deep to shallow cracks. The conditions of the J-Tz dominance on the three-dimensional crack front tip were shown to be limited to positive T-stress geometries, and the J-Tz-Q2D approach can extend the crack border dominance of the three-dimensional deep and shallow bend models along the crack front tip until perturbed by an elastic-plastic corner field. Practical implications The paper reports the limitation of the J-Tz approach, which is used to calculate the state of three-dimensional crack tip stresses in power law hardening materials. The results from this paper suggest that the characterization of the three-dimensional crack tip stress in power law hardening materials is still an open issue and requires other suitable solutions to solve the problem. Originality/value This paper demonstrates a thorough analysis of a three-dimensional elastic-plastic crack tip fields for geometries that are initially either fully constrained (positive T-stress) or unconstrained (negative T-stress) crack tip fields but, subsequently, the T-stress sign changes due to crack length reduction and specimen thickness increase. The J-Tz stress-based method has been tested and its dominance over the crack tip field is shown to be affected by the combined in-plane and the out-of-plane constraints and the corner field effects.


2018 ◽  
Vol 165 ◽  
pp. 13009
Author(s):  
Jesse van Kuijk ◽  
René Alderliesten ◽  
Rinze Benedictus

This paper discusses the appropriateness of crack length as a reference dimension for fatigue damage. Current discussion on short crack versus long crack data is still divided between various approaches to model small crack growth. A proper physical explanation of the probable cause of the apparent differences between short crack and long crack data is not yet provided. Long crack data often comprises crack growth in constant thickness specimens, with a through crack of near constant crack front geometry. This is not true for corner cracks or elliptical surface crack geometries in the small crack regime where the crack front geometry is not symmetric or through-thickness. This affects similitude parameters that are based on the crack length. The hypothesis in this paper is that a comparison between long crack data and short crack data should be made using similar increments in crack surface area. The work applied to the specimen is dissipated in generation of fracture surface, whereas fracture length is a result. The crack surface area approach includes the two-dimensional effect of crack growth geometry in the small crack regime. A corner crack and a through crack are shown to follow the same power law relationship when using the crack area as base parameter. The crack front length is not constant, and its power law behaviour for a corner crack is shown.


2011 ◽  
Vol 2-3 ◽  
pp. 739-742 ◽  
Author(s):  
Jing Yu Zhai ◽  
Hui Li ◽  
Qing Kai Han

In this paper, the element birth and death technique is used to simulate the damping stripping process of damping coating, and the interface of substrate and damping coating is simulated by contact elements or interface elements. The stress intensity factors and crack length are also calculated based on finite element method under different thicknesses and elastic modulus The simulation could provide reference for the design and optimize of damping coating.


SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 88-98 ◽  
Author(s):  
Mohsen Masihi ◽  
Peter R. King ◽  
Peyman R. Nurafza

Summary Uncertainty in geometrical properties of fractures, when they are considered as the conductive paths for flow movement, affects all aspects of flow in fractured reservoirs. The connectivity of fractures, embedded in low-permeability zones, can control fluid movement and influence field performance. This can be analyzed using percolation theory. This approach uses the hypothesis that the permeability map can be split into either permeable (i.e., fracture) or impermeable (i.e., matrix) portions and assumes that the connectivity of fractures controls the flow. The analysis of the connectivity based on finite-size scaling assumes that fractures all have the same sizes. However, natural fracture networks involve a relatively wide range of fracture lengths, modeled by either scale-limited laws (e.g., log normal) or power laws. In this paper, we extend the applicability of the percolation approach to a system with a distribution of size. For scale-limited distributions, we use the hypothesis seen in the literature that the connectivity of fractures of variable size is identical to the connectivity of fractures of the same size whose length is given by an appropriate effective length. It is then necessary to define the percolation probability based on the excluded area arguments. In this research work, we also validate the applicability of this idea to fracture networks having a uniform, Gaussian, exponential, and log-normal length distribution. However, in the case of the power-law length distribution, we have found that the scaling parameters (e.g., correlation length exponent) have to be modified. The main contribution is to show how the critical exponents vary as a function of the power-law exponent. To validate the approach, we used outcrop data of mineralized fractures (vein sets) exposed on the southern margin of the Bristol Channel basin. We show that the predictions from the percolation approach are in good agreement with the results calculated from field data with the advantage that they can be obtained very quickly. As a result, they may be used for practical engineering purposes and may aid decision-making for real field problem. Introduction Many hydrocarbon reservoirs are naturally fractured. The conventional approach to investigate the impact of geological uncertainties on reservoir performance is to build a detailed reservoir model using available geophysical and geological data, upscale it, and then perform flow simulation. In fractured reservoirs, this can be done by using equivalent continuum models (i.e., dual porosity), discrete network models, or a combination of both [see Warren and Root (1963), Quenes and Hartley (2000), and Dershowitz et al. (2000)]. The nature of fluid flow in fractured reservoirs of low matrix permeability depends strongly on the spatial distribution of the conductive natural fractures. We use the term "fracture" to mean any discontinuity within a rock mass that developed as a response to stress. Fractures exist on various length scales from microns to kilometres. They appear as tensile (e.g., joints or veins) or shear (e.g., faults) and can act as hydraulic conductors or barriers to flow movement. Conductive fractures may be connected in a complicated manner to form a complex network. The connectivity of such networks is a crucial parameter in controlling flow movement, which in turn depends on the geometrical properties of the network such as fracture orientation, spacing, or length distribution.


2003 ◽  
Vol 06 (02) ◽  
pp. 215-222 ◽  
Author(s):  
G. J. RODGERS ◽  
Y. J. YAP ◽  
T. P. YOUNG

Motivated by recent empirical studies of the length distribution of hospital waiting lists, we introduce and solve a set of models that imitate the formation of waiting lists. Patients arriving in the system must choose a waiting list to join, based on its length. At the same time patients leave the lists as they get served. The model illustrates how the power-law distributions found in the empirical studies might arise, but indicates that the mechanism causing the power-laws is unlikely to be the preferential behavior of patients or their physicians.


Sign in / Sign up

Export Citation Format

Share Document